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NEXTRANS Project 0102IY04 Final Report, December 2013 

Dynamic Multi‐Modal Multi‐Objective Intersection Signal Priority Optimization 

Introduction 

In recent years travelers have shown an increased interest in multi‐modal transportation 

including transit, bike, and pedestrian modes. However, traditionally traffic signal timing has 

mainly focused on efficiently serving a single mode (cars). In addition, public agencies have 

increased their support for mass transit ridership and expansion of bicycling and walking 

facilities to attract more users. So, traffic signal timing strategies should consider multi‐modal 

perspectives that may require multi‐attribute approaches leading to more environmentally 

conscious and sustainable policies. 

Past research have studied various aspects of multi‐modal traffic signal strategies, including the 

assessment of relative mode importance, and how to provide more equitable service for all 

modes by optimizing signal settings at intersections and along corridors. Most studies on the 

subject show multi‐modal signal control is limited to at most two modes, and are based on 

traditional approaches, which are very restricting in nature compared to cycle‐free strategies 

such as the one proposed in this study. 

This project takes into account some of the concepts used in previous research, and applies 

multi‐attribute decision‐making (MADM) methods to combine the effects of four modes of 

transportation (automobiles, buses, pedestrians, and bicycles) in selecting the most appropriate 

signal timing settings at an intersection. Three MADM methods were used: SAW (Simple 

Average Weighting), AHP (Analytic Hierarchy Process), and TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution). The results from the MADM methods are compared 

for different scenarios, including scenarios with weights to specify the relative importance of 

the four modes. A case study involving an intersection with the option of servicing pedestrians 

using standard parallel crossings or a pedestrian scramble phase is evaluated. 
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In addition to the MADM methods, a multi‐agent approach based on reinforcement learning 

was applied to optimize signal timings using a computer simulation package and real‐time 

decision making based on inputs from virtual detectors. This resulted in a signal timing 

operation that is cycle‐free and adaptive. The agent‐based approach uses model‐free 

reinforcement learning to optimize the operation of the signals through a multi‐objective 

reward function. The agents make decisions, observe, and learn from the behavior of the 

system, evolving the knowledge about the scenario presented to the agent and thus, improving 

future decisions. The microscopic simulator VISSIM was selected for this study because it is 

capable of simulating all four modes of transportation: pedestrians, bicycles, motor‐vehicles, 

and transit, and it also has the capabilities of using external controllers (i.e. reinforcement 

learning agents with a multi‐objective reward function) for manipulating the traffic signals in 

running time. 

Findings 

Results indicate that all three methods selected signal timing settings that followed general 

expectations in terms of cycle length and green time splits; however, their optimal alternatives 

were not always the same. The sensitivity of the solutions also varied across strategies, with 

SAW and TOPSIS being more sensitive than AHP. 

SAW and TOPSIS are well‐suited for optimal selection of multi‐modal signal timing parameters 

because they can deal with multiple criteria (modes of transportation and their characteristics) 

and large number of alternatives with simplicity. In TOPSIS, the utility of each mode is assumed 

to linearly increase or decrease across the range of alternatives, thus special consideration 

should be given to non‐linear functions. While SAW considers each alternative separately, 

TOPSIS uses all alternatives together to normalize their utility, therefore a more careful and 

comprehensive selection of alternatives is required. 

NEXTRANS Project No 0102IY041Technical Summary - Page 2 



 

                         

                         

                             

                             

                             

              

 

                             

                             

                               

                                

                               

                             

                               

            

 

                         

                           

                         

                       

                               

 

                       

                               

 

	

                         

                         

On the other hand, AHP allows inputs based on qualitative and quantitative comparisons 

between alternatives or modes, but it requires an extensive number of pairwise comparisons 

for problems with large number of alternatives. Matrix manipulations may also be an issue if 

many alternatives are considered at a given time. However, the method is less subject to 

variation when the reliability of the input data is questionable and when the alternatives are 

not evenly distributed across the utility range. 

In terms of the agent‐based strategy to control the signals, results showed that the agent 

effectively balanced delays for all modes and was sensitive to changes in the demands. Green 

times, and therefore cycle length, was very stable for the direction with low traffic (N‐S) which 

had a very high lower bound that exceeded the time required to process motorized traffic, but 

was required for the pedestrians to complete the crossing. In contrast, green times in the E‐W 

direction showed great variability and tried to balance the demands as they entered the links 

and the competing traffic. In this direction green times varied from its lowest possible value (18 

seconds) to more than 100 seconds. 

Average delays and number of stops per mode obtained with the agent‐based approach 

confirmed that the green time variations responded to variability in the demand, since the 

delays were relatively stable for all replications once a performance plateau was reached. 

Overall, the agent‐based approach showed potential for multi‐modal applications and it is 

appealing since it reacts in real time to changes in the traffic conditions of all modes. 

Overall, the agent‐based approach showed potential for multi‐modal applications and it is 

appealing since it reacts in real time to changes in the traffic conditions of all modes. 

Recommendations 

Further research is recommended to extend the analysis of MADM methods for multimodal 

traffic control. The relative ease of computation of these methods, combined with proven 

NEXTRANS Project No 0102IY041Technical Summary - Page 3 



 

                       

                           

    

 

                               

                         

                           

                       

  

 

                       

                         

                             

                           

                     

           

performance in other domains, make this approach worth additional exploration. Results from 

this study support the potential application of these methods as an alternative to more 

traditional approaches. 

The lack of guidelines to make the decision of providing or not a scramble phase (pedestrian 

exclusive phase) calls for further research in this matter. Sensitivity charts illustrate examples 

when a scramble phase is beneficial for all modes combined. However, additional analysis of 

multiple configurations and scenarios are needed to develop strong guidelines that are 

practice‐ready. 

Further studies on parameter selection and alternative algorithms are needed to strengthen 

the resources available to researchers and practitioners, and to generate stronger guidelines on 

how to use these types of cycle‐free and adaptive strategies in a real world intersection. 

Additional research is also recommended to include a multimodal analysis along a corridor and 

in networks with closely‐spaced intersections, where coordination of green times between 

adjacent signals is important. 

NEXTRANS Project No 0102IY041Technical Summary - Page 4 
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1 INTRODUCTION	 

In recent years travelers have shown an increased interest in multi‐modal transportation 

including transit, bike, and pedestrian modes. However, traditionally traffic signal timing has 

mainly focused on efficiently serving a single mode (cars). In addition, public agencies have 

increased their support for mass transit ridership and expansion of bicycling and walking 

facilities to attract more users. So, traffic signal timing strategies should consider multi‐modal 

perspectives that may require multi‐attribute approaches leading to more environmentally 

conscious and sustainable policies. 

Past research have studied various aspects of multi‐modal traffic signal strategies, including the 

assessment of relative mode importance, and how to provide more equitable service for all 

modes by optimizing signal settings at intersections and along corridors. Most studies on the 

subject shows multi‐modal signal control limited to at most two modes, and are based on 

traditional approaches, which are very restricting in nature compared to cycle‐free strategies 

such as the one proposed in this study. 

One of the main goals of this project is to take into account some of the concepts used in 

previous research, and apply multi‐attribute decision‐making (MADM) methods to combine the 

effects of four modes of transportation (automobiles, buses, pedestrians, and bicycles) in 

selecting the most appropriate signal timing settings at an intersection. The results from the 

MADM methods are compared for different scenarios, including scenarios with weights to 

specify the relative importance of the four modes. The selected MADM methods are for the 

analysis are SAW, AHP, and TOPSIS, which have been successfully used in several domains for 

complex decision making problems. 

9 



 

 

                         

                           

                             

                         

                         

                             

                         

                               

                         

                         

         

 

                             

                             

                

 

                           

                       

                       

                                 

                         

                         

                               

                             

                             

                             

                             

       

In addition to the MADM methods, a multi‐agent approach based on reinforcement learning 

(RL) was applied to optimize signal timings using a computer simulation package and real‐time 

decision making based on inputs from detectors. This resulted in a signal timing operation that 

is cycle‐free and adaptive. The agent‐based approach uses model‐free RL to optimize the 

operation of the signals through a multi‐objective reward function. The agents make decisions, 

observe, and learn from the behavior of the system, evolving the knowledge about the scenario 

presented to the agent and thus, improving future decisions. The microscopic simulator VISSIM 

was selected for this study because it is capable of simulating all four modes of transportation: 

pedestrians, bicycles, motor‐vehicles, and transit, and it also has the capabilities of using 

external controllers (i.e. RL agents with a multi‐objective reward function) for manipulating the 

traffic signals in running time. 

The analysis of the performance of the MADM methods and the RL approach was conducted 

based on a case study involving an intersection with the option of servicing pedestrians using 

standard parallel crossings or a pedestrian scramble phase. 

The following chapter provides a general background on the formulations used for the delay 

estimations, and overviews of the MADM methods and the agent‐based approach. In 

Chapter 3, past studies on multimodal optimization and reinforcement learning agents are 

briefly mentioned to provide a general sense of the current state of art and practice. Chapter 4 

defines the methods and strategies to compute solutions with the MADM methods, including 

unit‐based strategies, occupancy, and a combination of the previous two. Chapter 5 presents 

the case study site and the current conditions at the intersection, setting the ground for the 

description of the implementation of the MADM methods and the definition of the agent and 

its components in a multimodal problem, contained in Chapter 6. The results and analysis are 

included in Chapter 7, additional work on an introductory analysis of whether to implement a 

scramble or no scramble phase is presented in Chapter 8, and conclusions are presented in 

Chapter 9. 

10 



 

 

 

 

 

 	 	 	 	

 	 	 	

                           

                         

          

 

                           

           

 

 

 

         

         

           

           

 

                              

                                 

      

 

 

 

2 BACKGROUND	 

2.1 Delay and performance measure 

2.1.1 HCM delay formulas 

The 2010 version of the Highway Capacity Manual (HCM) provides guidance and formulas on 

calculating delay for all road user modes: automobiles, transit, bicycles, and pedestrians along 

facilities, segments, and at intersections. 

The average delay experienced by vehicles (including passenger cars and trucks) that arrive in 

the analysis period is given by: 

݀ ൌ  ݀ ଵ ൅ ݀ଶ ൅ ݀ଷ 

Where: 

݀ = control delay (s/veh), 

݀ଵ = uniform delay (s/veh), 

݀ଶ = incremental delay (s/veh), and 

݀ଷ = initial queue delay (s/veh). 

Uniform delay (݀ଵ) is the delay incurred due to random arrivals throughout a cycle. Assuming 

there is a single effective green period during a cycle and a single saturation flow rate during 

the analysis period, 

ሺ1ܥ0.5 െ ሻଶܥ/݃
݀ଵ ൌ 

1 െ  ሾminሺ1, ܺ ሻ݃/ܥሿ 

Where: 

11 



 

       

               

                   

 

                                   

                                 

                               

                   

                                 

               

 	  

  

  

  

  

 	  

 	  

  

  

 	 	  

 	  

 

                             

                       

                     

                       

 

 ,cycle length = ܥ

݃ = effective green time for phase, and

ܺ ൌ ݒ/ሺܿ ൈ ܲܨܪሻ	 = volume‐to‐capacity ratio and PHF = peak hour factor. 

The capacity, ܿ, is found by the product of the green ratio of the phase and the adjusted 

saturation flow rate of the lane: ܿ ൌ ݏ  ൈ  ,As presented in the HCM chapters 18 and 31 .ܥ/݃

the adjusted saturation flow rate, s, is a product of eleven factors which adjust for bus 

blockage, heavy vehicles, right turning vehicles, pedestrian‐bike interactions, parking, etc. 

which affects a base saturation flow rate of 1,900 passenger cars per hour per lane for a 

signalized intersection, ݏ ൌ ଴ݏ  ௐ݂ ு݂௏ ௚݂ ௣݂ ௕݂௕ ௔݂ ௅݂௎ ோ்݂ ௅்݂ ௅݂௣௕ ோ݂௣௕ where the factors adjust for: 

 ௐ݂ ൌ ݈ܽ݊݁ ݄ݐ݀݅ݓ   

 ு݂௏ ൌ ݄݁ܽݏ݈݄݁ܿ݅݁ݒ ݕݒ 

 ௚݂ ൌ ݁݀ܽݎ݃  

 ௣݂ ൌ ݏݐ݊݁݉݁ݒ݋݉ ݃݊݅݇ݎܽ݌ 

 ௕݂௕ ൌ ܾ݁݃ܽ݇ܿ݋݈ܾ ݏݑ 

 ௔݂ ൌ ܽ݁ݎܽ ݁݌ݕݐ   

 ௅݂௎ ൌ ݈ܽ݊݁ ݊݋݅ݐܽݖ݈݅݅ݐݑ 

 ோ்݂ ൌ ݐ݄݃݅ݎ െ ݏ݊ݎݑݐ 

 ௅்݂ ൌ ݐ݂݈݁  െ ݏ݊ݎݑݐ   

 ௅݂௣௕ ൌ ݈݂݁ݐ െ ݊ܽ݅ݎݐݏ݁݀݁݌ ݀݊ܽ ݏ݊ݎݑݐ െ ܾ݅ܿ݊݋݅ݐܿܽݎ݁ݐ݊݅ ݈݁ܿݕ 

 ோ݂௣௕ ൌ ݐ݄݃݅ݎ െ ݀݊ܽ ݏ݊ݎݑݐ 	݊ܽ݅ݎݐݏ݁݀݁݌ െ ܾ݅ܿ݊݋݅ݐܿܽݎ݁ݐ݊݅ ݈݁ܿݕ 

The total delay (்݀) with the incremental queue accumulation method can be used to replace 

the standard ݀ଵ equation for progressed traffic movements, movements with multiple green 

times, and movements with multiple saturation flow rates (e.g. protected‐permitted left‐turn 

movements, as stated in HCM. The expression for ்݀ is the following: 

12 



 

 

 

 

                   

             

             

                   

                             

                    

 

                           

                       

 

 

 

 

           

           

           

 

                             

             

 

 

 

                       

ܳ௜ ൌ ܳ௜ିଵ െ ሺ3600/ݏ െ ݍ/ܰሻݐ௧೏,೔ ൒ 0.0  

்݀ ൌ
∑௡
௜ୀଵ 0.5ሺܳ௜ିଵ ൅ ܳ௜ሻݐௗ,௜

 ܥݍ

Where 

ܳ௜ = queue size at end of interval i (veh), 

 ,arrival rate = v/3600 (veh) = ݍ

 saturation flow rate (veh/h/ln), and = ݏ

 .ௗ,௜ = duration where arrival and saturation are constant (s)ݐ

The baseline delay (without initial queue) is calculated similarly to ்݀ but instead of ݐௗ,௜, ݐ௧,௜ ൌ 

min൫ݐௗ,௜, ܳ௜ିଵ/ݓ௤൯ is used, where ݓ௤ is the queue change rate. 

On the other hand, incremental delay (݀ଶ) takes into account random cycle failures when 

demand exceeds capacity or when there is prolonged oversaturation throughout the analysis 

period: 

݀ଶ ൌ 900ܶ ቎ሺܺ െ 1ሻ ൅ ඨሺܺ െ 1ሻଶ ൅
ܺܫ8݇
ܿܶ 

቏ 

Where 

ܶ = analysis period duration (h), 

݇ = incremental delay factor, and 

 .upstream filtering adjustment factor = ܫ

Finally, initial queue delay (݀ଷ) includes any additional delay that results from the presence of 

unmet demand from before the analysis period: 

݀ଷ ൌ
3600 ܳ௕ ൅ ܳ௘ െ ܳ௘௢ ൅

ܳ௘ଶ െ ܳ௘௢ଶ െ ܳ௕
ଶ 

ܶݒ
ቆݐ஺ ቇ

2 2 ஺ܿ 

Where 

 ,஺ = adjusted duration of unmet demand in the analysis period (h)ݐ
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ܳ௕ = initial queue at the start of the analysis period (veh), 

ܳ௘ = queue at the end of the analysis period (veh), 

ܳ௘௢ = queue at the end of the analysis period when ݒ ൒  ܿ஺ and ܳ௕ ൌ 0  (veh), and 

஺ܿ = average capacity (veh/h). 

For bicyclists, delay is calculated using the uniform delay formula for automobiles with the 

exception that when calculating the capacity, the saturation flow rate of a bicycle lane is 2,000 

bicycles/hr. For pedestrians, delay is calculated by the HCM by: 

݀௣ ൌ 
ሺܥ െ  ݃

ܥ2
௪௔௟௞ሻଶ 

Where 

݀௣ = pedestrian delay (s/p), 

 ,cycle length (s) = ܥ

݃௪௔௟௞ = effective walk time for the phase, refer to HCM equations 18‐55, 56, and 57 for 

variations based on the presence of signal heads or actuation. 

2.1.2 HCM performance measure 

One of the performance measures the HCM uses to express the quality of flow for an approach 

and intersection is the Level of Service (LOS). It is typically based on delay and/or volume‐to‐

capacity ratio for the automobile mode, as seen in Table 2‐1. For analysis of an approach or an 

intersection, only control delay is used to estimate LOS. For analysis of individual lane groups, 

both control delay and the volume‐to‐capacity ratio for that particular lane group are used 

(HCM, 18‐5). For pedestrian mode, pedestrian delay, number of traffic lanes crossed, number 

of right‐ and left‐turning vehicles, vehicle speed, and the presence of right‐turn channelizing 

islands are used to calculate a perception LOS score as shown in Table 2‐2 (HCM, 18‐7). These 

other factors adjust for the volume of conflicting vehicle movements, vehicle speed, number of 

lanes crossed etc. For bicycle mode, width of the cross street, paved shoulders, through, and 
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bicycle lanes, demand flow rates of left turn, through, and right‐turn vehicle movements, 

number of through lanes, and proportion of on‐street parking occupied are used to find the LOS 

score. 

Table 2‐1 – LOS Criteria for automobile mode for an intersection 

Control Delay (s/veh) 
LOS by Volume‐to‐Capacity Ratio 

≤ 1.0 > 1.0 
≤ 10 A F 

> 10 and ≤ 20 B F 
> 20 and ≤ 35 C F 
> 35 and ≤ 55 D F 
> 55 and ≤ 80 E F 

> 80 F F 
Source: Highway Capacity Manual 2010 Exhibit 18‐4 

Table 2‐2 – LOS Criteria for pedestrian and bicycle modes for an intersection 

LOS Score LOS 

≤ 2.00 A 
> 2.00‐2.75 B 
> 2.75‐3.50 C 
> 3.50‐4.25 D 
> 4.25‐5.00 E 

> 5.00 F 
Source: HCM 2010 Ex. 18‐5 

2.2 Multi‐criteria procedures 

Multi‐attribute decision making (MADM) is used to select, from a finite set, one or more 

“alternatives” or “options” given multiple “criteria” or “attributes” that contribute a “value” to 

each alternative. The criteria can sometimes be conflicting when some are beneficial to the 

decision and others are costly. The use of weights that are assigned to each criteria aid in 

determining which criteria are more important than others. Policy decisions often involve a set 

of different criteria and alternatives where one has to be chosen to satisfy an overall goal. The 
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objective of MADM methods is to enable a decision maker to choose an alternative given these 

assigned weights and values. 

2.2.1 SAW 

Simple Additive Weighting (SAW) is frequently cited as the most used method for MADM. It 

involves normalizing each value either through linear normalization (each value is divided by 

the maximum value in that criteria) or vector normalization (each value is divided by the norm, 

square root of the sum of the squares of all values across the criteria). Typically, linear 

normalization is used. (Yoon & Hwang) The score of each alternative is then obtained by the 

sum of the products of the respective weight of each criteria by the normalized value for each 

alternative. The higher the score, the higher it is ranked which means it is more preferred. 

When the units are the same, such as in this case where delay is being used in either seconds 

per unit or seconds per person, the method can be simplified without normalization and the 

weighted values can be summed directly (also known as the Weighted Sum Method). 

(Triantaphyllou et al). The score of each alternative (ݏ௝) is calculated as the total weighted 

delay, which is simply the sum of the products of the volume, the delay per unit, and the weight 

of each mode. Since delay is to be minimized, lower scores are better. The general expression 

to estimate the scores is as follows: 

௝ ൌ෍ݏ ௜ݓ௜݀௜௝ݒ 
௜ 

2.2.2 AHP 

Analytical Hierarchy Process (AHP) is another popular MADM method. Introduced by Thomas 

Saaty in 1971, it structures a decision into different levels of criteria and alternatives that 

contributes to an overall goal/objective. Relative importance between modes result from a 

matrix of dimension I x I (Matrix 1 in Figure 2‐1) and the pairwise comparisons (Pi,i) between 

modes (Matrix Set A in Figure 2‐1). Values for the comparisons are selected out of 9 possible 

levels (1 through 9) in the original scale proposed by Saaty (alternative scales are also 
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available), with reciprocals being used when the other mode is more important (1/2, 1/3…1/8, 

1/9). Then, the eigenvector of the I x I matrix (xII) is calculated to obtain the weight for each 

mode. The same process is repeated I times in matrices of size J x J with pairwise comparisons 

of alternatives (signal timings) with respect to a given criteria such as delay, where delays from 

each alternative are ranked against each other ( ௝ܲ,
௜
௝). The resulting eigenvectors (xji, each with J 

rows) are placed together in a matrix (J x I) (Matrix 2 in Figure 2‐1) that is multiplied to the 

eigenvector of the criteria (with I rows) (Matrix 3 in Figure 2‐1). The final vector contains the 

score (sj) of each alternative. These are then sorted from highest to lowest, resulting in a 

ranking of the alternatives. (Zolfani & Antucheviciene, Mateo) Figure 2‐1 shows a 

representation of the steps to calculate the scores (sj) in AHP. 

Figure 2‐1 – Schematic representation of AHP 
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2.2.3 TOPSIS 

Developed by Hwang and Yoon, TOPSIS ranks alternatives by viewing the decision as a 

geometric problem. The highest‐ranked alternative (or ideal solution, IS) to be chosen should 

be closest to the most positive ideal solution (PIS) while being the furthest away from the most 

negative ideal solution (NIS). TOPSIS uses relative weights and the minimum and maximum 

values of each mode to determine the two ideal points (A*, A‐) and the distances between each 

alternative and those points. By assuming that each criterion is monotonically increasing or 

decreasing in utility along with the use of geometric distances, it is a straightforward approach 

to ranking alternatives, and is the most sensitive method partially due to its reliance on the 

positive and negative extreme ideal points. (Mateo, Yeh). A schematic representation of TOPSIS 

is shown in Figure 2‐2. First, each alternative (j) is evaluated for each mode (i) to obtain a rating 

(rij). In this implementation, ratings were the total delay experienced by a given mode when 

using a given alternative. Ratings are normalized (nij) (Matrix 1 in Figure 2‐2) and multiplied by 

the corresponding mode weight (Matrix 2 in Figure 2‐2) to obtain a matrix of weighted 

normalized values (wij) (Matrix 3 in Figure 2‐2). In this paper, the mode weights were obtained 

from the eigenvector of the criteria matrix used in AHP (xII). The distance of each alternative 

from the PIS and NIS is then calculated, resulting in a score. Higher scores are preferred. 

Figure 2‐2 – Schematic representation of TOPSIS 
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2.3 Agent‐based 

An alternative approach to solve a multi‐attribute decision making problem is the use of 

approximate tools incorporating artificial intelligence, and more specifically machine learning. 

Some complex problems may be difficult to model or may present difficulties for policy 

selection given uncertainties in the input values. Finding optimal signal timings at signalized 

intersections may fall into such category of complex problems if the variability in traffic and the 

ability to predict traffic behavior in the future is considered. Among several techniques from 

machine learning, reinforcement learning (RL) is well suited for this task given that it can adapt 

the system decisions in real time given actual traffic demands and it creates knowledge to 

develop an expert agent based on experience directly collected at the subject intersection. In 

other words, reinforcement learning has the potential to act as a human directing traffic in real 

time. Within reinforcement learning, Q‐learning has been selected to be used as the 

mechanism for storing system knowledge, and thus for making decision and control the traffic 

signals. 

In general a RL problem can be thought as the problem of finding the policy that guarantees 

maximum expected rewards ܸ∗ሺݏሻ: 

ܸ∗ሺݏሻ ൌ	݉ܽݔగܸగሺݏሻ,  ܵ ∋ ݏ	 ݈݈ܽ ݎ݋݂

where Vπ(s) is the value of state s following policy π (also known as the “cost‐to‐go”), x is an 

action drawn from a finite set of possible actions. This maximization problem can also be 

described in terms of the value of state‐action pairs (called Q‐values), and therefore the goal 

will be to find a policy with action‐value functions (ܳగሺݏ, ܽ ሻ) leading to maximum expected 

total rewards: 

ܳ∗ሺݏ, ܽ ሻ ൌ	݉ܽݔగܳగሺݏ, ܽ ሻ 
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The advantages of having values of state‐action pairs, as opposed of only states, are mostly 

observed in systems where the dynamics are not completely known (the algorithm is model‐

free) or where the random information received over time is not precisely determined in 

advance (such as the traffic signal problem). The reason for such advantage is that there is no 

need to estimate the full expectation of the transition function to perform an update of the Q 

estimates (as opposed to the standard Bellman equation). This is, in Q‐learning: 

ܽ ,ݏොሺݍ ሻ ൌ ܿ௦௦ᇱ௔ ൅ ߛ  max
௔ᇱ 

ܳሺݏ′, ܽ′ሻ 

as opposed to the standard Bellman equation: 

ܳሺݏ, ܽ ሻ ൌ ௦௦ᇱܥ ௦ᇲ 
௔ max௔ ൅ ௦ܲ௦ᇱ ∑ߛ ௔ᇱ 

ܳሺݏ′, ܽ′ሻ 

Where (Css’) is the cost to transition from s to s’, ߛ is a discount factor for the value of the next 

state ܳగሺݏᇱ, ܽ ሻ, and ௦ܲ௦ᇱ′ ௔ is the probability of transitioning to state s’ given that the current 

state is s and the action taken is a. 

Since the learning process is done gradually and based on experiencing sampled information 

from the system, the estimates can be updated using the following standard rule: 

ܳሺݏ, ܽ ሻ ൌ ሺ1 െ ܽ ,ݏሻܳሺߙ ሻ ൅  ොݍߙ

where α is the learning rate. 

The general algorithm for Q‐learning can be formulated as shown in Figure 2‐3. 
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Figure 2‐3 – Pseudo‐code for the Q‐learning algorithm 

Q‐learning has shown good performance for a variety of practical problems under stationary 

conditions, even though the convergence of Q‐values has only been proven if the states are 

visited an infinite number of times (Watkins, 1989, 1992). Arguably, this is because practical 

decision making does not require full convergence of Q‐values as long as they are “sufficiently” 

different for the agent to commit to the best choice. Unfortunately, precise boundaries of the 

Q‐learning algorithm for decision‐making purposes only are not well defined and require 

further research. 

Several researchers have used Q‐learning for traffic control, and Q‐learning is one of the most 

widely used RL techniques, but the applications have typically been limited to finding optimal 

policies for vehicular traffic, and not for multimodal purposes. This study uses Q‐learning for 

multimodal traffic signal control as it is described in the following chapters. 
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3 LITERATURE	REVIEW	 

3.1 Multimodal Analysis in HCM 

HCM 2010 provides multimodal tools to analyze intersections by including automobiles, transit, 

pedestrians, and bicyclists into the analysis. However, despite it being a large advance in 

analyzing all modes that use an intersection as compared to previous editions, HCM 2010 has 

yet to treat the delay of users together. There is no overall method of combining delays; 

rather, it is segmented into delay or level of service (LOS) for each mode. In addition, the 

calculation of pedestrian delay is limited to a simple average of the red time that a user spends 

waiting and does not include the effect of volume or capacity, which the other modes do 

include. 

3.2 Multimodal studies 

The NCHRP Report 616 (2008) considers multi‐modal levels of service and the interaction of car, 

bus, bicycles, and pedestrians in complete street designs so that they are taken into account in 

the design stage. The report provides references to several other studies analyzing LOS, but 

they do not discuss the timing of traffic signals from a multi‐modal perspective. In addition, it 

does not combine LOS into a single comprehensive level of service, which leaves each mode 

fragmented and not comprehensive. 

Christofa and Skabardonis (2011) formulated a traffic signal control system that would minimize 

total person delay at an intersection which considered user delays amongst passenger cars and 

buses but placed a greater emphasis on reducing the delays experienced by transit passengers. 

In particular, they developed a system which could be applied to Transit Signal Priority (TSP) 
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algorithms to make it take into account live conditions of transit vehicles which also had 

conflicting routes. After development of the system, they tested it with a mathematical 

program of a signalized intersection in Athens, Greece which had conflicting bus routes. The 

authors also point out that existing TSP only takes into account vehicle delay rather than person 

delay at an intersection. They compared results from the program under two scenarios – 

vehicle‐based and person‐based preferential treatment – versus a model of the existing signal 

settings. Their results indicated that their system improved total person delay at the 

intersection since it weighted the delays of transit vehicles higher (with an average occupancy 

of 40) than passenger cars (with an average occupancy of 1.25) and was able to take into 

account conflicting bus routes. 

Fixed phases and cycle lengths were used, so that the only way to assign signal priority was to 

use early green or green extension. In addition, active signal priority was used since the model 

relied on the ability to sense traffic flow and transit vehicles, rather than passive signal priority, 

which relies on historical traffic data and expected bus frequency. Three scenarios were tested 

in their mathematical program – the base scenario with existing signal settings, one which 

minimized vehicle delay, and the other which minimized person delay. The results of their 

program with minimizing vehicle delay indicated that the car delay decreased by 3.81% but the 

transit delay jumped by 23.96%, resulting in a net increase in total delay of 3.63% for all users. 

However, when minimizing person delay was the goal, vehicle delay decreased by 1.11% and 

transit delay decreased by 19.97%, resulting in a net overall total delay decrease of 6.17% 

versus the existing signal settings. In general, the proposed optimization resulted in reduced 

person delays for all users for the modeled conditions. When comparing a person‐based 

optimization against the vehicle‐based optimization, the overall total delay at the intersection 

was modeled to be 9.5% less than a vehicle‐based optimization. This was the result of 

comparing a worse scenario for transit users (vehicle‐based optimization) to a better scenario 

(person‐based) instead of to the base scenario (as manually calculated earlier). (Christofa and 

Skabardonis) 
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Taylor and Mahmassani (2010) considered bicycles along an arterial and their progression with 

fixed‐timing plans. The authors’ goal was to develop a conceptual framework for signal 

coordination for bicyclists by treating the problem as a multi‐objective problem. Their 

objectives were to maximize one‐way auto and bicycle progression while minimizing delay 

along a corridor and amongst the cross‐streets and minimizing stops. They brought up 

challenges, which included the variations in speed due to users, effects of grade and wind, 

bandwidth, and ability to make left‐turns under progression. They recommended educating 

bicyclists to maintain a higher than average speed to increase the likelihood of facing a green 

signal. Giving additional green time, more than needed by vehicles along the corridor, to 

bicyclists is also proposed for progression, even though it creates additional delay to cross‐

street autos. Lowering vehicle speeds is also suggested along with half‐cycles. (Taylor and 

Mahmassani, 2010) 

Shladover et al (2009) studied the speeds and behaviors of bicyclists while crossing wide 

arterials from a minor street. By doing so, they recommended the length of extended green 

intervals for minor streets when bicyclists are present so that they have sufficient time to cross. 

They believed that having them use actuated signals like pedestrians would be an 

inconvenience so it was important for there to be an accurate minimum green time, 

representative of a realistic crossing time, on the minor street to be in effect all the time so 

bicyclists are not trapped in the intersection (they noted that the current minimum green time 

was 4 sec). 

They collected and analyzed startup time, free flow/cruising speed in the intersection, effects of 

road geometry and user demographics (most importantly, age), and the impacts of decreased 

green split for the major road. They recorded video images of two intersections with high 

bicyclist traffic in California (arterial: seven lanes, 40mph, and four lanes, 25 mph) and 

concurrent with the signal head. Using video image‐processing software, they plotted the 

locations of bicyclists across the intersection overlaid with the traffic signal phase times. By 

doing so, they were able to obtain startup time, crossing time, and average speed of the 
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bicyclist. They also tested the effects of reducing green time for the arterial in VISSIM by 

increasing the minimum green for the side street and they found the effects to be minimal. In 

the end, they devised a crossing time estimate as a function of an offset time, width, crossing 

speed, and a factor. (Shladover et al, 2009) 

Rouhieh (2008) and Alecsandru et al. (2010) analyzed a method to give an optimal coordinated 

signal plan along an urban arterial in Montreal for automobiles, bicyclists, and pedestrians. 

They adapted a “Delay‐Safety” performance measure previously developed by Zhang and 

Prevedouros which applies a delay and safety factor per mode into a weighted average of 

traffic volume. They then use an Artificial Neural Network model to choose the best signal 

timing to optimize delay and safety. They used VISSIM along with traffic data from a newly 

installed bicycle lane at a one‐way major arterial along four intersections in Montreal, Quebec. 

The model anticipates whether or not signal synchronization, and the characteristics of it, is 

most suitable given a set of inputs. Their results showed that 99.8% of the tested scenarios 

correctly identified which type of signal plan should be used (i.e. isolated, coordinated to 

promote automobiles, or coordinated to promote bicycles) which would give the optimal Delay‐

Safety value. 

Noland (1996) argued for greater emphasis on pedestrians when it came to signal timing and to 

be treated more equitably in urban intersections instead of only favoring vehicular traffic. He 

said pedestrians’ value of time is more costly than an automobile due in part to walking speed 

and the greater delay incurred because of the greater likelihood of encountering an 

unfavorable pedestrian signal. In particular, he recommended minimizing travel time costs for 

both cars and pedestrians. His optimization model relates the cost of travel delay from signal 

timings for drivers and pedestrians, where the optimal cost is the minimum of the sum of the 

product of the average delay, time value, and volume of each mode for automobiles and 

pedestrians. He made an assumption, based on studies, that a pedestrian waiting at a signal is 

twice as costly as a driver waiting in a car. Noland used a car occupancy of 1 in his analysis. His 

results from using his optimization formula generated costs per person for various cycle 
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lengths. It indicated that if the pedestrian‐to‐automobile volume ratio is larger than 3, then 

there should be longer green time allocated from a cycle for pedestrians to minimize total costs 

at the intersection. (Noland, 1996) 

Carsten et al (1998) pointed out that often times pedestrian delay was 10 times vehicular delay 

in the UK, with minimum green times less than the average crossing time for pedestrians. In 

addition, they noted that the balance between pedestrian and vehicular traffic was not decided 

solely on economic or engineering studies, but it is also a political decision from a given 

jurisdiction. Their implementation of a pedestrian detection and actuated pedestrian phase 

was met with resistance from authorities who were worried it might lead to unacceptable 

vehicular delay. (Carsten et al, 1998) 

Virkler (1998) examined the benefits of considering pedestrians in signal coordination and later 

Bhattacharya and Virkler (2005) balanced delays to both vehicles and pedestrians by modifying 

signal timings and offsets between intersections in a network. They used the value of time as 

the indicator of delay, which AASHTO described as a function of average hourly family income, 

and any delay that is produced by the model is converted into a monetary value, and use 

Noland’s optimization equation of minimizing the total cost x average delay x volume. Various 

offsets of 5‐second multiples were analyzed along with a 15‐second walk signal, resulting in an 

average vehicle occupancy of 1.22 passengers per vehicle. The authors simulated five 

coordinated intersections with two‐way traffic in Synchro with existing pedestrian and vehicle 

delay data. They then compared which offsets created the minimum delay between the two 

modes. Their results showed that traffic signal progression which didn’t take into account 

pedestrian speeds ended up increasing overall network delay. (Bhattacharya and Virkler, 2005) 

The HCM formula for pedestrian delay, as provided earlier, treats pedestrian delay only as a 

function of the average amount of time they wait per cycle, or the effective red time. Unlike 

the other modes, the effect of demand and capacity of the crosswalk facility is not taken into 

account, which may reduce the accuracy of the delay estimates. According to the HCM 
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formula, if there are a large number of people waiting to cross the street, someone who arrives 

behind that group/platoon even when the “Walk” indication is on would not experience any 

delay at all. 

A formula which represents the area in between the arrival and saturation curves as presented 

by Dion et al (2004) for vehicular delay was used to simulate pedestrian delays. This formula 

includes saturation flow rate and arrival flow rates to help acknowledge that shortcoming and it 

represents the delay experienced per user per cycle. The model assumes uniform arrival and 

departures and provides results for the average delay incurred by a vehicle or pedestrian per 

cycle as shown in the expression below. (Dion et al, 2004) 

݀ ൌ  
 ଶݎ

ܥ2
ቀ 

ݏ
ݏ െ ݒ

ቁ 

Where 

݀ = delay (s/user/cycle), 

ݎ = effective red (s), 

ݏ = saturation flow rate (user/s), and 

ݒ = arrival flow rate (user/s). 

Ishaque and Noland (2005) furthered research on providing more equitable treatment of 

pedestrians at an intersection compared to the traditional approach of giving vehicles priority. 

They decided to use the microsimulator VISSIM instead of using analytical methods. A four‐

intersection network was simulated with midblock pelican crossings (pedestrian‐actuated 

signals) and zebra crossings (yield to pedestrians when they are present). Five vehicle types 

were simulated – car, pedestrian, taxi, heavy vehicle, and bus, where bus and heavy vehicles 

were equated into two cars. Bus lanes were also present and vehicle and pedestrian flows 

were provided. A key difference in their assumptions is their treatment of pedestrians as no‐

interaction types, where their movements are not subject to any other nearby presence instead 

of “modeling of pedestrians as vehicles… allows all waiting pedestrians to proceed 

simultaneously when the pedestrian green phase starts.” 

27 



 

  

                                 

                               

                                 

                       

                           

                          

                         

                               

                             

                   

                             

                             

                      

 

 	

                           

                                 

                         

                         

                           

                     

                           

  

 

                           

                                 

                             

Eight cycles ranging from 45 to 120 seconds were tested and pedestrian green time was kept at 

8 seconds. The simulation was run until a specified convergence criteria is met. Two vehicle 

phases (one for each road direction) were input for each of the four intersections. They also 

analyzed the differences of single and double pedestrian phases for 104‐ and 120‐second 

cycles. Single pedestrian phase is when pedestrians are served after two vehicle phases, 

whereas double pedestrian phase is when pedestrians are served after each vehicle phase. 

Various flow multipliers were tested from 1.0 (free‐flow) to 1.9 (overcapacity) for sensitivity 

purposes. Their principal finding was that a cycle between 60 and 72 seconds was optimal for 

light traffic conditions and 90 seconds for heavier. In addition, in their simulated network, 

double pedestrian phases reduce vehicle throughput with 104‐ and 120‐second cycles 

compared with a conventional 60‐second cycle with a single pedestrian phase. The value of 

time per mode is factored into another analysis. They included a scramble crossing, yet their 

model does not allow for diagonal movements. (Ishaque and Noland, 2005) 

3.3 Agent‐based 

Specifically for traffic signal control, the study of reinforcement learning dates back about 15 

years ago. One of the first of such studies was completed by Thorpe (1997), using the RL 

algorithm SARSA to assign signal timings to different traffic control scenarios. Later, Wiering 

(2000) discussed a state representation based on road occupancy and mapping the individual 

position of vehicles over time, and Bakker (2005) later extended this representation using an 

additional bit of information from adjacent intersections. This allowed communication between 

agents, trying to improve the reward structure and ultimately the overall performance of the 

system. 

Using a different approach, Bingham (1998, 2001) defined fuzzy rules to determine the best 

allocation of green times based on the number of vehicles that would receive the green and red 

indication. He presented a neural network to store the membership functions of the fuzzy rules, 
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reducing memory requirements. It is noted that a Cerebellar Model Articulation Controller 

(CMAC) has also been used in the past to store the information learned (Abdulhai, 2003). 

Another application using fuzzy rules for traffic control was presented by Appl and Brauer 

(2000), where the controller selected one of the available signal plans based on traffic densities 

measured at the approaching links. Using a single intersection, their fuzzy controller 

outperformed learning from a controller with a prioritized sweeping strategy. 

Choy et al. (2003) also used a multi‐agent application for traffic control, but creating a 

hierarchical structure with three levels: intersection, zones, and regions. The three types of 

agents (at each level) made decisions based on fuzzy rules, updated their knowledge using a 

reinforcement learning algorithm, and encoded the stored information through a neural 

network. Agents selected a policy from a set of finite possible policies, where a policy 

determined shortening, increasing, or not changing green times. Experiments on a 25‐

intersection network showed improvements with the agents compared to fixed signal timings, 

mostly when traffic volumes were higher. 

Campoganara and Kraus (2003) presented an application of Q‐learning agents in a scenario of 

two intersections next to each other, showing that when both of those agents implemented the 

learning algorithm, the systems performed significantly better than when only one of none of 

them did. The comparison was made with a best‐effort policy, where the approach with longer 

queue received the green indication. 

A study on the effects of non‐stationary nature of traffic patterns using RL was proposed by De 

Oliveira et al. (2006), who analyzed the performance of RL algorithms upon significant volume 

changes. They pointed out that RL may have difficulties to learn new traffic patterns, and that 

an extension of Q‐learning using context detection (RL‐CD) could result in improved 

performance. 
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Ritcher et al (2007) showed results from agents working independently using a policy‐gradient 

strategy based on a natural actor‐critic algorithm. Experiments using information from adjacent 

intersections resulted in emergent coordination, showing the potential benefits of 

communication, in this case, in terms of travel time. Xie (2007) and Zhang (2007), explored the 

use of a neuro‐fuzzy actor‐critic temporal difference agent for controlling a single intersection, 

and used a similar agent definition for arterial traffic control where the agents operated 

independently from each other. The state of the system was defined by fuzzy rules based on 

queues, and the reward function included a linear combination of number of vehicles in queue, 

new vehicles joining queues, and vehicles waiting in red and receiving green. Results showed 

improved performance with the agents compared to pre‐timed and actuated controllers, 

mostly in conditions with higher volumes and when the phase sequence was not fixed. 

Most of the previous research using RL focused on agents controlling a single intersection, or a 

very limited number intersections interacting along an arterial or a network. However, with an 

increase in the interest of RL techniques for traffic signal control, some recent studies have 

explored to use of reward functions specifically derived from the traffic domain and with 

consideration of queue spillovers in oversaturated conditions. Examples of these studies are 

those by El‐Tantawy and Abdulhai (2010) and Medina, Hajbabaie, and Benekohal (2012 and 

2013). 

Regarding multimodal applications using RL, efforts in previous research have been focused on 

multimodal transportation in the sense of accounting for multiple types of vehicular traffic 

including passenger cars, trucks, and automobiles. However, to the authors’ knowledge, there 

is no published work related to multimodal traffic signal control incorporating the effects of 

non‐motorized traffic, namely pedestrians and bicycles. This study presents one of such 

applications, weighing the time spent by four modes of transportation (passenger cars, buses, 

bicycles, and pedestrians) to improve traffic signal control in a true multimodal approach based 

on Q‐learning. 
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4 METHODOLOGY	 

The general objective of the methodologies used in this study was to minimize delay for all 

users of the four modes at an intersection. A number of different approaches can be followed 

to take into account delays for different modes at a signalized intersection, including 

methodologies that obtain intersection delay or LOS per mode, and methodologies that 

consider delay per direction per mode. The delay per mode takes the average delay per mode 

and multiplies it by the volume to obtain the total delay. This treats users from all approaches 

as having the same average delay, which can result in an unfair treatment for a particular 

direction with higher delay. An alternative approach is delay per direction per mode, which 

takes the sum of each delay per lane group/direction and multiplies it by the volume in that 

lane group/direction. This is a more accurate portrait of the total delay experienced at the 

intersection for uneven demands, which when combined with delays from other modes, allows 

a more fair comparison to be made. Both approaches to estimate delay are evaluated for all 

three MADM methods (SAW, AHP, and TOPSIS): 

‐ Approach 1: Average delay “Per Mode” x {volume of that mode} 

‐ Approach 2: ∑ Delay “Per Direction” per mode x {volume of that mode in that direction} 

In addition, three strategies were used to combine delays from the different modes of 

transportation, as described in the following sections. 

4.1 Strategies 

4.1.1 Unit‐based 

The traditional strategy for obtaining the delay at an intersection can be referred to as unit‐

based delay. This strategy counts each “moving unit” as a singular element that, on average, 
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experiences the same delay as other moving units using the intersection, including cars, buses, 

bikes, and pedestrians. Since delay is typically calculated based on the characteristics of a 

passenger car, a mode such as a transit vehicle has to be accounted for in a different way. A 

bus can be counted as two passenger car equivalent units, where the conversion can be due to 

factors such as the greater space it occupies or its slower acceleration rate versus a passenger 

car. In this sense, buses are responsible for twice the delay of a car at an intersection. Bicycles 

and pedestrians are also counted as one moving unit each. The delays for these modes are 

calculated separately except for buses, which would incur twice the average delay of a car. The 

overall average intersection delay based on units would be estimated as the average delay that 

each mode experiences weighted by the number of units per mode: 

 ሻ݀݁ݏܾܽ െ ݐ݅݊ݑሺ	 ݕ݈ܽ݁݀ ݊݋݅ݐܿ݁ݏݎ݁ݐ݊݅ ݈ܽݐ݋ܶ

ൌ ݀஼௔௥ ∙ ஼௔௥ ൅݈݋ܸ ݀஻௨௦ ∙ ஻௨௦ ൅݈݋ܸ ݀஻௜௞௘ ∙ ஻௜௞௘ ൅݈݋ܸ ݀௉௘ௗ ∙  ௉௘ௗ݈݋ܸ

where ݀஻௨௦ ൌ ܥܤ  ∙  ݀ ஼௔௥, ܥܤ ൌ ݏݑܤ 	ݎ݋ݐ݂ܿܽ ݊݋݅ݏݎ݁ݒ݊݋ܥ, and the summation uses either of 

the aforementioned approaches. 

4.1.2 Occupancy 

Although heavy vehicles such as buses can be converted into passenger car equivalents, the 

delay of all users in the bus may not be of equitable proportion. For instance, if a bus is treated 

as two passenger cars to allow for volume and delay calculations to be done, in the end, it 

would mean that it experiences only twice the delay a car experiences. In a majority of cases 

especially in urban areas, this would be highly unrepresentative of the actual delay incurred on 

the bus due to the larger person capacity it can hold as compared to a passenger car. A typical 

passenger car might hold up to five people but a typical bus can hold ten times as much. 

A way of more equitably expressing the delay experienced by different vehicular modes at an 

intersection is by applying an occupancy factor to the calculation to give results in person delay. 

Studies have looked at this as a way of giving extra consideration to buses over cars when there 
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are heavy mass transit usage or traffic control measures such as transit signal priority. This 

method multiplies the control delay by the average occupancy by the respective volume of 

each mode. While cars may have an average occupancy of 1.25 persons per car, a bus can have 

an average occupancy of 10 people per bus. Each passenger on the bus experiences the same 

delay and twice the delay of a passenger car. This is a more accurate representation of the 

genuine delay that a bus has than using the typical unit‐based approach. Bicyclists and 

pedestrians would have an occupancy of 1. The total occupancy delay would be the sum of the 

delays multiplied by the volume and the occupancy, whether using the average delay per mode 

multiplied by total volume or sum of the delay per direction multiplied by volume per direction. 

 ሻ݀݁ݏܾܽ െ ݕܿ݊ܽ݌ݑܿܿ݋ሺ	 ݕ݈ܽ݁݀ ݊݋݅ݐܿ݁ݏݎ݁ݐ݊݅ ݈ܽݐ݋ܶ

ൌ ሺ݀஼௔௥ ∙ ∙ ஼௔௥݈݋ܸ ܱܿܿ஼௔௥ሻ ൅ ሺ݀஻௨௦ ∙ ∙ ஻௨௦݈݋ܸ ܱܿܿ஻௨௦ሻ

൅ ሺ݀஻௜௞௘ ∙ ∙ ஻௜௞௘݈݋ܸ ܱܿܿ஻௜௞௘ሻ ൅ ሺ݀௉௘ௗ ∙ ∙ ௉௘ௗ݈݋ܸ ܱܿܿ௉௘ௗሻ 

4.1.3 Mode Priority and Occupancy 

Importance weights can also be applied to reflect an agency’s decision to prioritize one mode 

over another. This is applied to the control delay per vehicle by multiplying the importance for 

each mode by the volume and occupancy of each mode. This allows for a higher priority to be 

given to modes based on a mode’s value of time, socioeconomic conditions or environmental 

considerations. For instance, if cars are given an importance weight of 1 as a baseline, buses 

can be given a higher weight, to reflect its ability to serve more people efficiently and reduce 

congestion. Pedestrians and bicyclists can be given a greater weight than cars since their value 

of time might be higher. Priority weights can be assigned directly or found using AHP. 

 ሻ݀݁ݏܾܽ െ ݕݐ݅ݎ݋݅ݎ݌ሺ	 ݕ݈ܽ݁݀ ݊݋݅ݐܿ݁ݏݎ݁ݐ݊݅ ݈ܽݐ݋ܶ

ൌ ሺ݀஼௔௥ ∙ ∙ ஼௔௥݈݋ܸ ܱܿܿ஼௔௥ ∙ ∙ ஼௔௥ሻ ൅ ሺ݀஻௨௦݅ݎܲ ∙ ஻௨௦݈݋ܸ ܱܿܿ஻௨௦ ∙ ஻௨௦ሻ݅ݎܲ

൅ ሺ݀஻௜௞௘ ∙ ∙ ஻௜௞௘݈݋ܸ ܱܿܿ஻௜௞௘ ∙ ∙ ஻௜௞௘ሻ ൅ ሺ݀௉௘ௗ݅ݎܲ ∙ ௉௘ௗ݈݋ܸ ܱܿܿ௉௘ௗ ∙  ௉௘ௗሻ݅ݎܲ

33 



 

 

 

 

 

                                     

                             

                                    

                             

                         

                             

                          

                             

                           

                         

                          

     

 

                           

                              

                             

                             

                             

                           

                            

                             

                         

                     

5 CASE	STUDY	 

The intersection of Green St and S Wright St, located at the border of the cities of Urbana and 

Champaign, Illinois was chosen as the case study to test the MADM methods and the agent‐

based approach. The intersection is at a unique location since east of it lies the campus of the 

University of Illinois at Urbana‐Champaign, and west of it lies what is referred to as 

“Campustown.” The campus side has multiple buildings, residential and dining halls, and the 

Illini Union, a focal point for students and administrative offices. Campustown is a downtown 

area with shops, restaurants, and private housing located primarily along Green St. Northeast 

of the intersection is home to engineering buildings, southeast to the Illini Union and the 

remainder of the campus, southwest is Campustown which eventually turns into the south side 

of the campus, and the northwest is Campustown which eventually turns into private 

residential housing. The east‐west direction has heavy vehicular and pedestrian volume due to 

its respective attractions. 

The intersection geometry of Green and Wright St composes of four approaches with varying 

lane configurations and widths, as seen in Figure 5‐1. The eastbound approach consists of one 

shared through and right‐turn lane and a left turn lane, with one wide receiving lane 

(approximately 18 ft). The westbound approach consists of one left‐turn lane, one through 

lane, and one right‐turn lane, with one receiving lane. The northbound approach consists of 

one shared left, through, and right‐turn lane, with one receiving lane. The southbound 

approach consists of one shared left‐turn and through lane, with one receiving lane. No right‐

turns are allowed from the southbound approach. A parking lane is located upstream and 

downstream of the southbound approach. Bus stops are located downstream of the 

northbound and eastbound approaches. Sidewalk curb extensions (aka bumpuots or 
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neckdowns) are installed at the northeast, southwest, and northwest corners to increase 

waiting area to accommodate pedestrians. All sidewalk corners have a higher radius of 

curvature than the northwest corner. Due to the asymmetrical nature of this geometry, not all 

pedestrian crossings intersect the curb cut or other crosswalks at a 90° angle. Markings are also 

present for diagonal crossings for pedestrians for a scramble crossing. On‐street bicycle lanes 

are provided only along the northbound approach on the east side of S Wright St; an off‐street 

lane is provided on the westbound approach on the north side of Green St. 

Figure 5‐1 – Satellite view of intersection (Google Maps) 

The current phasing plan for the intersection consists of three vehicular phases and one 

pedestrian phase and is pre‐timed with no actuation (Table 5‐1). The east‐west phase has 31 

seconds of green with permitted left‐turns, followed by three seconds of yellow and two 

seconds of all‐red. Next, the southbound phase consists of nine seconds of protected green 

and yellow for the left‐turn and through traffic. Northbound traffic then receives a green phase 

concurrently with the southbound phase for nine additional seconds of green followed by three 

seconds of yellow and two seconds of all‐red. Finally, a pedestrian scramble phase begins with 

seven seconds of Walk, 21 seconds of Flashing Don’t Walk, and three seconds of all‐red. The 
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cycle length is 90 seconds. The abbreviated forms of approaches used hereafter are “EB” for 

eastbound, “WB” for westbound, “NB” for northbound, and “SB” for southbound. Movements 

and lane groups are abbreviated as “L” for left‐turn, “T” for through, and “R” for right‐turn. 

Table 5‐1 – Existing phasing plan 

Phase Approach Movements Allowed Duration (s) 

1 
EB LTR 

31 (green), 3 (yellow), 2 (all‐red)
WB LTR 

2 SB LT 9 (green) 

3 
NB LTR 

9 (green), 3 (yellow), 2 (all‐red)
SB LT 

4 Pedestrian Scramble 7 (Walk), 21 (Flashing Don’t Walk), 3 (all‐red) 
Total 90 

Nine bus lines run through the intersection: 

 1 Yellow: runs along Wright St 

 2 Red: runs west along Green St and turns right onto Wright St (and reverse) 

 4 Blue: runs along Wright St 

 5 Green: runs along Green St 

 9 Brown: runs along Wright St 

 12 Teal: runs west along Green St and turns right onto Wright St (and reverse) 

 13 Silver: runs north along Wright St and turns right onto Green St (and reverse) 

 22 Illini: runs north along Wright St and turns right onto Green St (and reverse) 

 27 Air Bus: runs north along Wright St and turns right onto Green St (and reverse) 

Table 5‐2 shows hourly vehicular volumes collected on a weekday when classes were in session 

separated by approach and vehicle type: car or bus. Trucks were not included in this count. 

36 



 

           

	 	
           

	            

	            

	            

	            

 

                             

                                      

                             

                         

                       

                           

                               

 

 

                               

                       

                                 

                                 

                     

                                

                          

                              

                               

                                 

 

 

Table 5‐2 – Hourly vehicular volumes 

Car Bus 
Left Through Right Left Through Right 

EB 47 198 10 0 2 0 
WB 24 256 72 10 4 7 
NB 1 5 3 0 10 11 
SB 52 25 3 5 12 0 

Pedestrian counts were performed by placing a video camera by the window on the second 

floor of a retail store at the northwest corner. Due to the limitations of the viewing angle of the 

camera, counts for pedestrians were only obtained on three of the six crossings at the 

intersection: the north crosswalk (crossing Wright St), east crosswalk (crossing Green St), and 

one of the diagonals (crossing northwest corner to/from southeast corner). Although 

pedestrian volumes could have been obtained for the other crosswalks by counting the number 

are within view, it would not be accurate since their exact location stepping on/off would be 

unknown. 

In addition, these counts were done as part of a study to determine the speed between free‐

flow and non‐free‐flow pedestrians and between individuals and groups, with combinations of 

the four, at an intersection with a pedestrian scramble phase. Due to the varying paths that 

pedestrians can take from one curb cut to the other, as well as the presence of diagonal 

crosswalks, each crossing direction was segmented into different starting and stopping 

channels. The channels were based on the location of the existing crosswalk lines but could be 

extended based on preliminary observation on where pedestrians queued and/or left the curb. 

The distance of these path combinations that could be taken at each crossing was measured. 

Since the channels of where pedestrians were stepping off and on the curb at the southwest 

corner was outside of the viewing angle of the camera, counts of those subjects would not be 

useful. 
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Therefore, to represent the pedestrian volumes at the crosswalks that were not counted, the 

volumes of their counterparts were assumed as their volumes. For example, the north 

crosswalk volumes would equal the south crosswalk volumes, the east volumes would equal 

the west volumes, and the northwest‐southeast diagonal volumes would equal the northeast‐

southwest diagonal volumes. A summary of the counts is in Table 5‐3. 

Table 5‐3 – Pedestrian volumes for scramble phase 

Crosswalk Volume (p/h) 
North (real) 284 

South (assumed) 284 
East (real) 73 

West (assumed) 73 
Northwest‐Southeast diagonal (real) 251 

Northeast‐Southwest diagonal (assumed) 251 
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6 IMPLEMENTATION 

6.1 Operations 

The experiment includes calculations for two modes of operation at the intersection: no‐

scramble and scramble. No‐scramble is defined to be normal operation where pedestrians are 

given a Walk and Flashing Don’t Walk indications during the same vehicular green phase in the 

same direction. When a conflicting movement is given the green, these pedestrians would see 

the steady Don’t Walk indication. Scramble is defined to be where pedestrians are given the 

steady Don’t Walk indication during all vehicular movement phases. They only receive the Walk 

and Flashing Don’t Walk indications during their own special phase, where vehicles are not 

allowed to move. This is not to be confused by the presence of parallel and diagonal 

crosswalks, where parallel crosswalks allow for pedestrians to cross at a generally 

perpendicular angle to the opposite side of the street, whereas diagonal crosswalks allow 

pedestrians to cross opposite corners. During a scramble mode, bicyclists were assumed to not 

move and to follow vehicular green. 

For scramble mode, since no pedestrian movements are permitted, a time of six seconds was 

assigned as the minimum green time for each vehicular phase. For no‐scramble mode, in order 

to determine the minimum green times needed to accommodate the Walk and Flashing Don’t 

Walk indications, the average of the path lengths for each crosswalk were first obtained. If 

path lengths were not available because they were not included in the previously mentioned 

study, then a straightforward measurement between midpoints of each crosswalk were used. 

The maximum of each pair of parallel crosswalks (e.g.: maximum of east (65 ft) and west (36 ft) 

and maximum of north (44 ft) and south (39 ft) was then used to calculate the Flashing Don’t 

Walk times by dividing the distance by the walking speed (Table 6‐1). The walking speed used 
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for the pedestrian clearance interval is defined to be 3.5 feet per second by the Manual on 

Uniform Traffic Control Devices. (MUTCD, 497) The minimum Walk indication was determined 

by using HCM equation 18‐66 (or equivalently HCM equation 31‐72), which calculates the 

timing required to serve pedestrian demand per cycle: 

௣௦ ൌݐ 3.2  ൅  
ܮ
ܵ 
൅ 0.27 ௣ܰ௘ௗ 

Where 

 ,ሻݏሺ ݁݉݅ݐ ݁ܿ݅ݒݎ݁ݏ ݊ܽ݅ݎݐݏ݁݀݁݌ ௣௦ ൌݐ

,ሻݐሺ݂ ݄ݐ݈݃݊݁ ݃݊݅ݏݏ݋ݎܿ ൌ ܮ

ܵ ൌ ݀݁݁݌ݏ ݈݃݊݅݇ܽݓ ሺ݂ݏ/ݐሻ, ܽ݊݀  

௣ܰ௘ௗ ൌ ݁ݐܽݎ ݓ݋݈݂ ݊ܽ݅ݎݐݏ݁݀݁݌ ሺݎ݄/ݏ݀݁݌ሻ. 

The minimum vehicular green time for a no‐scramble mode would then be the Flashing Don’t 

Walk added to the Walk time of five seconds (Table 6‐2). 

To simplify the simulation of the experiment as well as remove concerns regarding the storage 

length of the left‐turn bay when high volumes are involved and in the delay calculation of 

permitted left‐turns, left‐turns volumes were removed (Table 6‐3). Including protected left‐

turn phases for each approach would have led to minimum cycle lengths of 70 seconds for base 

undersaturated volumes, 80 seconds for saturated volumes, and 90 seconds for oversaturated 

volumes. Since the current signal operation has a 90 second cycle length, this would have 

reduced the reasonable ranges of alternatives. In addition, bicycle lanes were assumed to be 

on‐street so that they would be complying with traffic signals meant for automobiles. 

Table 6‐1 – Experiment timing plan for pedestrians 

Mode: No‐scramble Scramble 
Direction Walk Flashing Don’t Walk Walk Flashing Don’t Walk 
EB, WB Varies by volume 13 s  ‐ ‐

NB, SB Varies by volume 19 s ‐ ‐

Scramble ‐ ‐ Varies by volume 24 s 
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Table 6‐2 – Experiment phasing plan 

Phase Approach 
Movements 
Allowed 

Minimum Green 
(No‐scramble) 

Minimum Green 
(Scramble) 

Change and 
Clearance 

1 
EB TR 

18 s 6 s 4 s 
WB TR 

2 
NB TR 

24 s 6 s 4 s 
SB T 

3 Pedestrian ‐ ‐ ‐
1 s (scramble 

only) 

Table 6‐3 – Experiment vehicular volumes 

Car Bus 
Left Through Right Left Through Right 

EB 0 198 10 0 2 0 
WB 0 256 72 0 4 7 
NB 0 5 3 0 10 11 
SB 0 25 3 0 12 0 

Because the current phasing plan has a scramble phase for pedestrians, no volumes were 

available for parallel crosswalks. To include this in the delay calculations when in a parallel 

crossing mode, assumptions were made so that the total diagonal volumes were divided 

between the four crosswalks equally and added to the parallel volumes (Table 6‐4). The total 

diagonal volumes were not split according to demand weighted by the existing parallel 

crosswalks since it is unknown exactly how pedestrians would use the intersection if diagonal 

crossings were not present. 

Table 6‐4 – Experiment pedestrian volumes for parallel phases 

Crosswalk Volume (p/h) 
North (assumed) 409 
South (assumed) 409 
East (assumed) 199 
West (assumed) 199 
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6.2 Delay estimation 

The effective green time for each phase was equal to the green time for each lane group since 

the lost times and extensions canceled each other out with the current assumed change and 

clearance times. 

As mentioned earlier, the adjusted saturation flow rate, s, for a lane group is a function of the 

product of the base saturation flow rate, 1900 pc/h/ln, and eleven adjustment factors. The 

following assumptions were made in calculating s for all lane groups: 

 ௐ݂ ൌ ݈ܽ݊݁ ݏ݄ݐ݀݅ݓ 	݂݋ ݁݃݊ܽݎ ݊݅ 	10	ݐ݂ െ 12.9݂1.00 → ݐ 

 ு݂௏ ൌ ݄݁ܽݕݒ 	݋ݐ ݀݁݉ݑݏݏܽ ݏ݈݄݁ܿ݅݁ݒ 	1.00 → 0 ܾ݁ 

 ௚݂ ൌ ݃݁݀ܽݎ 	݋ݐ ݀݁݉ݑݏݏܽ 	1.00 → ݈݁ݒ݈݁ ܾ݁ 

 ௣݂ ൌ ݊ݏ݅ ݃݊݅݇ݎܽ݌ ݋ 	1.00 → ݐ݊݁ݏ݁ݎ݌ 

 ௕݂௕ ൌ ܾݐ݋݊ ݏ݁ݏݑ 	ݓ݋݈݂ ݃݊݅݇ܿ݋݈ܾ 	݌ݑ݋ݎ݃ ݈݁݊ܽ ݊݅ 	250 ݅/ݓ	ݐ݂ 	݌݋ݐݏ ݂݋ 	1.00 → ݈݁݊݅ 

 ௔݂ ൌ ܦܤܥ	ܽ ݐ݋݊ → 1.00 

 ௅݂௎ ൌ ݀݁ݎ݄ܽݏ ݁݊݋ ݕ݈݊݋ 	ݎ݁݌ ݈݁݊ܽ ݁ݒ݅ݏݑ݈ܿݔ݁ ݎ݋ 	1.00 → ݌ݑ݋ݎ݃ ݈݁݊ܽ 

 ோ்݂ ൌ ݆ܽ݀ݐ݊݁݉ݐݏݑ	 ݂ ܾ 	݁݁ݏ :ݏ݊ݎݑݐ 	ݐ݄݃݅ݎ ݎ݋  ݓ݋݈݁

 ௅்݂ ൌ ௅݂௣௕ ൌ ݊ݐ݂݈݁ ݋ 	1.00 → ݏ݊ݎݑݐ 

 ோ݂௣௕ ൌ ݐ݄݃݅ݎ െ ݊ܽ݅ݎݐݏ݁݀݁݌ ݊ݎݑݐ െ ܾ݅ܿݓ݋݈ܾ݁ ݁݁ݏ :ݐ݊݁݉ݐݏݑ݆݀ܽ ݈݁ܿݕ 

The adjustment for right turns for a lane group that does not share itself with another 

movement (e.g. through or left) is: ோ்݂ ൌ 
ா

ଵ

ೃ 
, where ܧோis the equivalent number of through 

cars for a protected right‐turning vehicle = 1.18. The only lane group that meets this criteria is 

the WBR (westbound right) lane group. The resulting equation would be ݏ ൌ ∙ ଴ݏ  ோ்݂ ∙ ோ݂௣௕ ∙ 

1.00. If a lane group involves shared right‐turn and through movements, a different approach 

is used which involves HCM Equation 31‐61 and its supporting equations: 
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 ௦௥ ൌݏ௧௛ݏ
1 ൅ ோܲሺܧோ,௠ െ 1ሻ  

Where 

 ,௧௛ = saturation flow rate of an exclusive through lane (adjusted for lane width, heavy vehiclesݏ

grade, parking, buses, and area type),

ோܲ = proportion of right‐turning vehicles in the shared lane (decimal), and 

 .ோ,௠= modified through‐car equivalent for permitted right‐turning vehiclesܧ

Supporting equations: 

ோ݂௣௕ 
െ 1ቇ ௟ܲ௖ ൅ ோ,௠ ൌܧ1 ቆ  

 ோܧ

௟ܲ௖ ൌ 1 െ ൬൤2 
௔௣௣ݒ
 ௟௖ݏ

൨ െ 1൰
ଶ

൒ 0.0  

௔௣௣ ൌݒ
௟௧ݒ ൅ ௧௛ݒ ൅ ௥௧ݒ
௦ܰ௟ ൅ ௧ܰ ൅ ௦ܰ௥ 

Where 

௟ܲ௖ = probability of a lane change among the approach through lanes, 

,௟௧ݒ ,௧௛ݒ  ,௥௧ = demand flow rate of left‐turn, through, and right‐turn lane groups for approachݒ

௦ܰ௟ , ௧ܰ , ௦ܰ௥ = number of lanes in shared left‐turn and through, through, and shared right‐turn 

and through lane group, and

௟௖ ൌݐ ௟௖ whereݐ/௟௖ = maximum flow rate at which a lane change can occur = 3,600ݏ 3.7  .ݏ

The adjustment for right‐turn pedestrian‐bicycle, ோ݂௣௕, is calculated to reduce the saturation 

flow rate due to interaction between pedestrians in the crosswalk, bicyclists in the bicycle lane, 

and right‐turning automobiles. If there is a no‐scramble mode, then only bicyclists are included 

and if there is a scramble mode, then both pedestrians and bicyclists are included. 

Pedestrians: 

ܥ
௣௘ௗ௚ ൌݒ  ௣௘ௗ ൑ 5,000ݒ

݃௣௘ௗ 

Where 

 ,௣௘ௗ௚ = pedestrian flow rate during the pedestrian service time (p/h)ݒ
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 ௣௘ௗ = pedestrian flow rate in the subject crossing (in both directions) (p/h), andݒ

݃௣௘ௗ = pedestrian service time; if not actuated = effective green time of phase (s). 

If ݒ௣௘ௗ௚ ൑ 1,000, then the pedestrian occupancy ܱܥܥ௣௘ௗ௚ ൌ 
௩೛೐೏೒

Otherwise, ܱܥܥ௣௘ௗ௚ ൌଶ଴଴଴ 
. 

0.4 ൅ 
௩೛೐೏೒
ଵ଴଴଴଴ 

൑ 0.90. 

Bicycles: 

ܥ
௕௜௖௚ ൌݒ  ݃ ௕௜௖ݒ

൑ 1,900 

௕௜௖௚ ൌܥܥܱ 0.02  ൅  
௕௜௖௚ݒ
2,700 

Where 

 ,௕௜௖௚ = bicycle flow rate during the green indication (bicycles/h)ݒ

 ,௕௜௖ = bicycle flow rate (bicycles/h)ݒ

݃ = effective green time of phase (s), and 

 .௕௜௖௚ = bicycle occupancyܥܥܱ

To combine both modes, the relevant conflict zone occupancy, ܱܥܥ௥, is: 

݃ 
௣௘ௗ௚൰ ൅ܥܥܱ ௕௜௖௚ െ ൬ܥܥܱ

݃௣௘ௗܱܥܥ௥ ൌ ൬
݃௣௘ௗ

݃ 
 ௕௜௖௚൰ܥܥ௣௘ௗ௚ܱܥܥܱ

In this experiment, the number of receiving lanes is equal to the number of turn lanes, so 

Equation 31‐81 is used to calculate the occupied time, ܣ௣௕் ൌ 1 െ  ௥. This is also equal toܥܥܱ

ோ݂௣௕. This is then used to calculate the adjusted saturation flow rate. 

For this experiment, the peak hour factor was assumed to be 1.0, period of analysis ܶ ൌ  

݇ the incremental delay factor ,ݎ݄	0.25 ൌ  0.5, and the upstream filtering adjustment factor, 

ܫ ൌ  1.0. An initial queue of zero vehicles in all lane groups was assumed. Since the bicycles are 

traveling in on‐street bike lanes, they are expected to respect the green signal for their 

direction and to not move into the intersection at all other times. Therefore, their effective 

green time is equal to the effective green time for their phase. 
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For pedestrian delay, the formula provided by Dion is adopted to represent the average delay 

per person in a crossing per cycle. The saturation flow rate for pedestrian movements, s, was 

calculated by using the HCM section on pedestrian circulation facility capacity. Pedestrian 

capacity can be expressed in terms of unit flow or pedestrians per minute per foot of walkway 

width. For a corner at a crosswalk with crossing directions, the capacity is given as 23 

peds/min/ft. (HCM, 4‐32) It was assumed based on average measurements of the holding area 

that 10 ft of width was available. This was then converted into seconds to result in ݏ ൌ  

 For the given intersection, for a parallel crossing, there are four crosswalks and .ݏ/݀݁݌	3.833

two cardinal directions per crosswalk, resulting in eight movements. For a scramble crossing, 

there are six crosswalks resulting in 12 movements. The green time that is used is equal to the 

Walk indication, since they assume that pedestrians will stop entering the crosswalk during that 

time. 

When pedestrians who normally are able to cross diagonally due to a scramble phase are 

forced to cross in a two‐stage parallel crossing, they incur in additional delay. This delay is a 

result of the additional wait time on the sidewalk and time needed to cross the additional 

distance. These were taken into account by adding to the pedestrian delay formula an average 

delay that is incurred based on the time until the Walk indication for the second crossing. 

6.2.1 Analytical approach with multi‐criteria methods 

The analytical approach involves the use of C++ programming in Microsoft Visual Studio. The 

above inputs and delay equations were coded to follow a routine which calculates delays and 

LOS per lane group, per mode, and an overall average delay for the intersection, weighted by 

volume, for signal time combinations between a user‐selected minimum and maximum cycle 

length at discrete cycle length increments. The input volumes for all modes can be adjusted for 

varying volumes to result in adjusted volumes. The conversion of buses to passenger car 

equivalents is also performed. Saturation flow rates are calculated for each lane group. If a 

lane group involves right‐turns, this is recalculated later for each signal time combination. 
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The minimum vehicular green times stated earlier in Table 6‐2 are used in determining the 

boundaries of signal timings for vehicles for each cycle. The program first starts off with 

calculations under the no‐scramble mode. It then begins with the minimum green time for the 

east‐west direction and the remaining time available for the north‐south direction is calculated 

based on lost times (yellow and all‐red times), with a minimum green time for that direction as 

well. During a no‐scramble mode, these times would be reflective of the minimum Walk (5 s) 

and Flashing Don’t Walk times for that particular direction. During a scramble mode, these 

minimum times would be 6 s. Once a signal time setting has been established, delays and LOS 

are calculated. 

The goal of the routine is to then store the intersection delays for unit‐based, occupancy‐based, 

and priority‐based and check for the minimum intersection delay for each method. If the 

current intersection delay is lower than the currently‐stored minimum, then this new result 

along with the signal timing associated with it, are stored. The results are output into a file. 

The routine then advances an additional second for the east‐west direction while subtracting a 

second from the north‐south direction. When the self‐checking mechanism has exhausted 

itself in allowable combinations for one cycle length, it moves to the next cycle increment. 

When the allowable combinations in the maximum cycle length is reached, the program will 

redo the entire process but for the scramble mode. If there are no pedestrians present, then 

the program will not enter the scramble mode. 

Results were then verified with the commercial traffic analysis software HCS 2010 Streets 

developed by McTrans to check the validity of calculations. The delays for unit‐based, 

occupancy‐based, and priority‐based were then used in the SAW, AHP, and TOPSIS methods, 

with the previously mentioned weights and rankings then applied. SAW is automatically 

obtained through the choice of minimum intersection delay, weighted by volumes for each 

mode, from the program. 
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6.2.2 Agent‐based approach 

As mentioned above, in addition to MADM methods, an approach using artificial intelligence in 

the form of reinforcement learning (RL) was also used to generate a multimodal control policy. 

Q‐learning was the RL chosen for this application and its implementation in the context of 

multimodal optimization is presented in this section. 

The basic structure of the RL system was previously presented by Medina et al (2013), and 

consists of an independent agent on each intersection to be analyzed. In this particular scenario 

only one intersection is considered, thus the communication module is not required, but it is 

noted that the system can be scaled to multiple intersections and to network configurations if 

needed. 

The case study was modeled in the traffic simulator VISSIM, which allowed the use of a user‐

defined signal controller and the manipulation of the traffic signals in real‐time. 

As it is shown in Figure 6‐1, the agent’s internal structure is composed of the following 

elements: a module to read inputs and perceive the state of the system, set or pool of potential 

actions to choose from, a reward function, a method to update the estimates and the current 

value of state‐action pairs, and a method for action selection. 
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Figure 6‐1 – Schematic representation of RL agent and the environment 

It is noted that since the Q‐learning algorithm is used, the agent can learn an optimal policy 

regardless of the action selection policy, as long as there is an adequate balance between 

exploration and exploitation such that all state‐action pairs are visited with enough frequency. 

More details on the action selection scheme are provided below. 

A description of each of the elements embedded in the agent is given as follows: 

6.2.2.1 Input 

The agent perceives the current state of the system by means of standard information available 

to traffic controllers about motorized vehicles and the state of the traffic signals. For this 

multimodal application, information on pedestrians and bicycles were also gathered in real 

time by means of detectors placed on the bike paths and sidewalks, in a similar way that 

motorized vehicles are typically detected through the use of inductive loops. 
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Thus, the inputs for the agent consisted of the current state of the signals and calls from 

advance and stop bar detectors for motorized vehicles, bicycles, and pedestrians. These 

allowed the agent to estimate the current queue and therefore the demand from each of the 

modes. 

Individual calls from each detector for each moving unit (a car, a bicycle or a pedestrian) are 

received by the agent and used to create a perception of the state of the system. A 

representation of the current state (S) is created using the following structure: 

ܵ ൌ  ሼݒ௘௪, ,௡௦ݒ ܾ௘௪, ܾ௡௦, ,௘௪݌ ݃ ,	 ௡௦݌ ሽ 

Where ݒ௘௪ is the current state of vehicles in the east‐west direction, ݒ௡௦ is the current state of 

vehicles in the north‐south direction, and g represents the signal displaying the green 

indication; the remaining elements represent the state of bicycles in the two directions of 

traffic (ܾ௘௪, ܾ௡௦), and the state of pedestrians also in the two directions of traffic (݌௘௪,  .(௡௦݌

The state space may grow to a value greater than desired if each of the elements has a wide 

range of possible values. A number of solutions can be implemented so solve this situation, 

including merging values from different modes, for example merging motorized vehicles and 

bicycles, or narrowing the range of values each element can take. 

6.2.2.2 Action Set 

A set of possible actions was limited to modifications to the state of the traffic signals given the 

restriction of a minimum green time once a phase is initiated. Since the case study did not 

consider left‐turning phases, only two signal phases in no‐scramble mode were allowed: east‐

west and north‐south. Different scenarios may include any number of phases, and restrictions 

on the phase sequence may or may not be imposed to the agent to analyze cases ranging from 
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total sequence freedom, to partial restrictions (e.g. leading left turns), to fixed sequence. 

Therefore, only two actions were available: give the right of way to E‐W or to N‐S. Decisions 

were taken by the agent every 2 seconds, which is the same frequency that new data was 

obtained from the environment. 

6.2.2.3 Reward function 

One of the most important aspects of the agent definition is the reward function. Rewards 

indicate the immediate benefits of taking an action, and are used for updating the long‐term 

values of state‐action pairs (i.e. Q‐values) and drive the knowledge gathered by the agent. 

For the agent to learn a given reward signal and to include it efficiently in its knowledge, it is 

ideal to express the rewards in terms of the state variables. Thus, if a reward signal is closely 

associated with the perceived state of the system, the agent can have a better estimation of 

the value of that state the next time it is visited. 

Rewards can be defined based on any number of calculations once the current state of the 

system is identified. In this research, the goal was to provide the agent flexibility for treating 

different transportation modes with a given importance weight and being able to account for 

their quality of service separately. Thus, the reward function combines components from all 

four modes to estimate their individual pressure to obtain the green indication. 

The basic expression for the reward estimation had two main components. One component 

estimates the combined value of users from all modes that would benefit if the green indication 

is received in each direction, and the second component estimates the time losses if the 

current phase is terminated. The main reward expression is shown as follows: 

∗ ሺ߮ሻܫሺ߮ሻ െ ሺݐ݂݅݁݊݁ܤ ሺ߮ሻ ൌ݀ݎܽݓܴ݁ ሻݕݐ݈ܽ݊݁ܲ  
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௫ݓ ሺ߮ሻ ൌ ෍ݐ݂݅݁݊݁ܤ
௚݃௫

ఝ െ ݓ௫௥ݎ௫
ఝ 

௫ 

 ଵߚ ൌ ݕݐ݈ܽ݊݁ܲ
ߚ ൅ ݊݋݅ݐܽݎݑܦ݁ݏ݄ܽܲ
ߚ ൅ ݊݋݅ݐܽݎݑܦ݁ݏ݄ܽܲ

ଶ

ଷ 
൅ ௫ݓସ ෍ߚ

௣݃௫
௫ 

Where ݓ௫
௚ 
and ݓ௫௥ are the weights assigned to mode x when it is receiving the green and red 

light indication, respectively; ݃௫
ఝ 
and ݎ௫

ఝ 
are the states of mode x in the direction receiving the 

green and red light indication under the phase ߮, respectively; ܫሺ߮ሻ is an indicator function 

that is equal to 1 if the phase ߮ is different from the current phase and 0 otherwise; ߚ௜ are 

positive coefficients, and ݓ௫
௣ 
is the weight assigned to the current state of mode x for penalty 

purposes (or ݃௫). 

The reward function considers basic aspects of signal control by implementing a penalty that 

increases with the phase duration, modeling the delay of users receiving the red indication. This 

guarantees that as long as there is demand in a given approach, the corresponding phase will 

eventually be initiated regardless of the opposing volume, preventing extremely long waiting 

times for low volume approaches. 

Previous studies by the authors along corridors and in networks also account for the effects of 

long queues generating potential blockages upstream. Extensions to arterials and networks 

need to be carefully considered but are straightforward. 

6.2.2.4 Knowledge update and storage 

The agent incorporates information to its knowledge by adding the immediate reward obtained 

by the previous action. This is performed by weighting the immediate reward with past rewards 

from the same state‐action pair using the standard Q‐learning update form shown as follows: 
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ܳሺݏ, ܽ ሻ ൌ ሺ1 െ ܽ ,ݏሻܳሺߙ ሻ ൅  ොݍߙ

ܽ ,ݏොሺݍ ሻ ൌ ݀ݎܽݓܴ݁  ൅ ߛ   max
௫ᇱ 

ܳሺݏ′, ܽ′ሻ 

Where ܳሺݏ, ܽ ሻ is the value of the executing action a in state s; ߙ is the learning rate that 

determines the tradeoff between immediate and long terms rewards; ߛ is the discount factor to 

represent the value of obtaining delayed rewards; and s’ and a’ are the state and action in the 

next time step. 

Modifications to the standard rule have been made to account for the fact that there is a 

minimum phase duration. In cases where the agent attempts to change the phase before the 

minimum duration has elapsed, the agent will obtain a maximum Q value corresponding to 

taking the action that leads to the current phase. In this way, the agent always makes decisions 

and updates its knowledge, even if it is forced to continue the current phase. 

6.2.2.5 Action selection scheme 

A mechanism to select an action given the current estimates of the state (or state‐action pairs) 

is necessary in order have an adequate spread in the number of states experienced, and also to 

visit them frequently enough to generate trusted estimates of their true value. Therefore, the 

action selection should consider the tradeoffs between maximizing immediate outcomes 

(exploitation) and the potential discovery of long‐term benefits after suboptimal actions are 

taken in the short term (exploration). 

The design of an adequate action selection strategy is even more significant for “off‐policy” 

algorithms (such as Q‐learning). This is because off‐policy algorithms perform the learning 

process independent from the action selection process as long as states are eventually visited 

with “sufficient” frequency. A common approach for the action selection mechanism is the use 
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of an e‐greedy policy, where the maximization of the immediate action is performed at all 

times, except for a random action selection with probability e. 

Similarly, a probabilistic action selection using a Boltzman or soft max distribution is common 

practice. Under this scheme, exploration is performed more often in the early stages of the 

learning process, as indicated by the number of times a state has been visited, and is also 

dependent on the current estimations of the values of being in a state. The general form of the 

probability of selecting a given action can be expressed as follows: 

Q ( s ,a ) 

T 

p (a) 
e 


b A 

x Q ( s ,b ) 

Te 

where T is a temperature factor that controls the probability of exploration versus exploitation 

and is dependent on the number of times a state has been visited. The greater the value of T, 

the more likely the agent is to have similar probabilities for all actions, and therefore to explore 

more often. Thus, each action has a probability to be chosen and it is a function of the 

estimated value of a state and the number of times the state has been visited. 

On the other hand, a combination of different action selection mechanisms or a hybrid 

approach can also be adopted. In such implementations, action selection can be guided based 

on one strategy at early stages, but then modified when estimates are considered to be more 

stable. This was precisely the choice selected in this study where the following strategies were 

combined: a) the very first time a state is visited, the action selection is biased towards the 

approach with the higher combination of number of vehicles and the amount of time they have 

been in the link; b) If the agent arrives at a state that has already been visited, but it has not 

taken one particular action for the first time, the decision is biased to take that action as a 

means of forced exploration. This is done until all actions have been tried at least once; c) once 

all actions have been experienced, a proportional rule to choose the best action was 
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implemented using a Boltzman distribution, until the estimates were considered to be more 

stable; and d) at later stages in the training process, e‐greedy selection was used to choose the 

action with the highest value estimates. This hybrid approach allowed for more extensive 

exploration at the beginning of the agent training, slowly transitioning to exploitation of higher 

state values as the estimates became more reliable. 
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7 RESULTS	&	ANALYSIS 

This chapter presents the results and analysis of the three MADM methods (SAW, AHP, and 

TOPSIS) for selecting optimal signal timing settings given a known demand, and also the results 

from a reinforcement learning (RL) agent controlling the traffic signal based on real‐time inputs 

and using Q‐learning. 

7.1 MADM Methods 

For the analytical approach, when the routine was finished, the optimal solutions involved only 

the no‐scramble mode signal timings. This is due to the increased delays it has on automobiles 

and bicycles based on the given volume inputs. The total delay and the average intersection 

delay, which was used as the comparison for finding the optimal signal timing, was consistently 

lower for the no‐scramble mode (Table 7‐1) than the scramble mode (Table 7‐2) due to the 

presence of high car and pedestrian volume along the EW directions. For this reason, the 

analysis that was carried out for SAW, AHP, and TOPSIS used delays from the no‐scramble 

mode. It should be noted that if concerns for pedestrian safety with turning vehicles were a 

deciding factor, then a scramble mode might be warranted as is currently implemented. In 

addition, both per mode and per direction delays, as described earlier, are provided. 
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Table 7‐1 – Example of No‐scramble per direction Unit‐based delays 

Cycle length: 60 60 60 60 60 60 60 60 60 60 60 60 

Eff. green EB/WB: 18 19 20 21 22 23 24 25 26 27 28 29 

Eff. green NB/SB: 34 33 32 31 30 29 28 27 26 25 24 23 

Walk indication EW: 5 6 7 8 9 10 11 12 13 14 15 16 

FDW EW: 13 13 13 13 13 13 13 13 13 13 13 13 

Walk indication NS: 15 14 13 12 11 10 9 8 7 6 5 4 

FDW NS: 19 19 19 19 19 19 19 19 19 19 19 19 

SAW Unit delay 
(delay by dir*vol) 
Car 10592 9978 9418 8899 8415 7960 7530 7117 6720 6344 5988 5650 

Bus 924 916 915 917 923 933 945 959 974 992 1013 1037 

Bike 590 563 536 509 483 458 434 410 387 365 343 322 

Ped 31228 30777 30347 29938 29549 29181 28833 28507 28200 27914 27649 27404 

Total 43334 42235 41215 40263 39371 38532 37742 36993 36281 35616 34994 34414 

Intersection (avg) 22.56 21.99 21.45 20.96 20.49 20.06 19.65 19.26 18.89 18.54 18.22 17.91 
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Table 7‐2 – Example of Scramble per direction Unit‐based delays 

Cycle length: 60 60 60 60 60 60 60 60 60 60 60 60 

Eff. green EB/WB: 6 7 8 9 10 11 12 13 14 15 16 17 

Eff. green NB/SB: 17 16 15 14 13 12 11 10 9 8 7 6 

Walk indication: 4 4 4 4 4 4 4 4 4 4 4 4 

FDW: 24 24 24 24 24 24 24 24 24 24 24 24 

SAW Unit delay 
(delay by dir*vol) 
Car 84663 54500 36474 26372 21011 18001 16092 14740 13701 12854 12138 11520 

Bus 3906 3033 2521 2249 2126 2079 2069 2081 2108 2148 2203 2280 

Bike 975 940 905 871 837 804 772 741 710 680 651 622 

Ped 32169 32169 32169 32169 32169 32169 32169 32169 32169 32169 32169 32169 

Total 121713 90642 72068 61660 56142 53053 51102 49730 48687 47851 47161 46591 

Intersection 
(avg) 

63.36 47.18 37.52 32.10 29.23 27.62 26.60 25.89 25.34 24.91 24.55 24.25 
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7.1.1 Analytical approach 

The analytical approach involved using the delays output from the program and applying the 

SAW, AHP and TOPSIS ranking methods to come up with an optimal solution. This includes 

both per mode and per direction delays. The optimal solution for SAW comes directly from 

selecting the signal timing setting for a particular strategy (unit‐, occupancy‐, or priority‐based) 

that has the lowest average delay for the intersection. For unit‐based delays, the optimal 

timing for both per mode delay and per direction delay is a cycle length of 70 s with 39 s of 

green for the EW and 23 s of green for the NS directions (Table 7‐3 and Table 7‐4). 

For occupancy‐based delays, the optimal timing for per mode delay is a cycle length of 70 

seconds with 39 s of green for EW and 23 s of green for NS whereas for per direction it is a cycle 

length of 60 s with 29 s of green for EW and 23 s of green for NS (Table 7‐5 and Table 7‐6). 

Since the NS direction is more heavily trafficked by buses and buses have an occupancy of 10 

users per bus (330 bus users) vs the EW direction (130 bus users), the lower total delay had an 

impact as compared to unit‐based and per mode delays. It also balanced out the delay 

experienced by car users, where the EW direction (670 car users) was greater than the NS (45 

car users) by not giving more time to the NS. When occupancy was a factor, per mode and per 

direction delays chose different optimal timings, as lower cycle lengths meant less wait for the 

buses in the NS direction. 

Similar results for priority‐based delays are shown in Table 7‐7 and Table 7‐8. The weights that 

were applied for priority‐based delays were a result of applying AHP to a comparison between 

the four modes (Figure 7‐1 and Figure 7‐2). The desire was to simulate a decision to make 

buses more important than other modes, but have bikes and pedestrians treated similarly. The 

low cycle lengths make sense due to the undersaturated conditions for automobiles (Table 7‐3). 

After the analysis with SAW, a set of ten signal timings alternatives were selected, including the 

optimal timing, for comparison with AHP and TOPSIS. These alternatives were chosen to 
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represent the following two cases: one where the times are equivalent for both directions 

(giving equal treatment), and another where the NS direction receives the minimum green 

time. These options are provided to simulate the choices that a decision maker could face in 

choosing the signal timings for multimodal operation without knowing detailed operational 

details. 

In order to use the different weighting powers of AHP and TOPSIS, the delays for AHP and 

TOPSIS used the average delays per mode and per direction as representative values for each 

alternative (Table 7‐9). AHP was applied in a similar fashion to how the weights for priority‐

based delays for SAW were obtained. Table 7‐10 shows the inputs used in an AHP comparison 

to obtain the weights for unit‐, occupancy‐, and priority‐based delay, with resulting weights for 

each strategy in Figure 7‐4, Figure 7‐6, and Figure 7‐8. 

Figure 7‐9, Figure 7‐10, Figure 7‐11, and Figure 7‐12 show the eigenvector from the pairwise 

comparisons of the ten signal timing alternatives for per mode delays, and if the per mode 

delays are used as weights, the final AHP rankings for each strategy are shown in Figure 7‐13, 

Figure 7‐14, and Figure 7‐15. The optimal alternative was a timing of 80‐49‐23 in unit‐, 

occupancy‐, and priority‐based strategies. The second best alternative was 70‐39‐23. For per 

direction delays, Figure 7‐16, Figure 7‐17, Figure 7‐18, and Figure 7‐19 show the eigenvector 

from the pairwise comparisons of the ten alternatives. After multiplying by the mode weights, 

the final AHP rankings for each strategy are in Figure 7‐20, Figure 7‐21, and Figure 7‐22. Since 

the initial comparisons treated alternatives with lower delays as more preferable, the higher 

the eigenvalue for an alternative, the more preferred that alternative is compared to the 

others. The optimal alternative was a timing of 60‐29‐23 in unit‐, occupancy‐, and priority‐

based strategies. The second best alternative varied between 70‐39‐23 for unit‐ and 

occupancy‐based delays and 60‐26‐26 for priority. 

For TOPSIS, optimal timings varied between cycle lengths of 60 to 80 s for both per mode and 

per direction as shown in Figure 7‐23 to Figure 7‐28. This optimal choice was close to what 
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SAW and AHP picked in most cases, with it choosing the same alternative as SAW four out of six 

times. Its second choice was often the optimal alternative that another multi‐criteria method 

picked. It should be noted that TOPSIS can be influenced by extreme values in alternatives, as 

this affects the ideal solutions and the distances of each alternative. 

Summary tables and figures for increasing the volumes by three and four times to simulate 

saturated and oversaturated conditions, respectively, are provided in Appendix A. As the 

pedestrian volume increased, the minimum walk time needed also increased, and the minimum 

green time for the NS direction increased. 

To summarize, the same set of operations are performed using three different multi‐criteria 

methods. SAW weights each mode as 1, whereas AHP and TOPSIS weight according to volume 

for unit‐based, volume x occupancy for occupancy‐based, and volume x occupancy x priority for 

priority‐based: 

 SAW, AHP, TOPSIS 

o Unit‐based 

 Per mode 

 Per direction 

o Occupancy‐based 

 Per mode 

 Per direction 

o Priority‐based 

 Per mode 

 Per direction 
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Table 7‐3 – SAW Unit per mode and v/c ratios for Undersaturated 

SAW‐Unit‐per mode Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

Total delay 

Car 6623 5756 7376 5402 8141 5282 8913 5302 9691 5416 

Bus 1071 931 1193 873 1316 854 1441 857 1567 876 

Bike 387 322 437 276 486 242 536 215 586 194 

Ped 28200 27404 29180 27469 30301 28021 31516 28898 32797 30002 

Intersection (avg) 18.89 17.91 19.88 17.71 20.95 17.91 22.08 18.36 23.24 18.99 

X=v/c for EB_T: 0.245 0.220 0.240 0.191 0.236 0.174 0.233 0.162 0.231 0.154 

X=v/c for EB_R: 0.028 0.023 0.027 0.018 0.026 0.016 0.026 0.014 0.025 0.013 

X=v/c for WB_T: 0.321 0.287 0.314 0.249 0.309 0.227 0.305 0.212 0.302 0.201 

X=v/c for WB_R: 0.241 0.197 0.231 0.156 0.224 0.135 0.219 0.122 0.215 0.113 

X=v/c for NB_T: 0.030 0.034 0.030 0.040 0.029 0.046 0.029 0.051 0.029 0.057 

X=v/c for NB_R: 0.048 0.056 0.047 0.070 0.046 0.086 0.045 0.103 0.044 0.124 

X=v/c for SB_T: 0.060 0.067 0.058 0.078 0.057 0.090 0.057 0.101 0.056 0.112 
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Table 7‐4 – SAW Unit per direction 

SAW‐Unit‐per dir*vol by dir Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

Total delay 

Car 6720 5650 7478 4981 8250 4558 9029 4279 9814 4097 

Bus 974 1037 1090 1295 1207 1579 1325 1880 1444 2195 

Bike 387 322 437 276 486 242 536 215 586 194 

Ped 28200 27404 29180 27469 30301 28021 31516 28898 32797 30002 

Intersection (avg) 18.89 17.91 19.88 17.71 20.95 17.91 22.08 18.36 23.24 18.99 
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Table 7‐5 – SAW Occupancy per mode 

SAW‐Occ‐per mode*vol*occ Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

FDW for peds (no scramble) EW: 13 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

FDW for peds (no scramble) NS: 19 

Total delay 

Car 8279 7195 9220 6753 10176 6603 11142 6628 12114 6770 

Bus 10709 9307 11925 8735 13162 8541 14412 8573 15669 8757 

Bike 387 322 437 276 486 242 536 215 586 194 

Ped 28200 27404 29180 27469 30301 28021 31516 28898 32797 30002 

Intersection (avg) 16.45 15.30 17.56 14.95 18.72 15.01 19.92 15.33 21.16 15.81 
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Table 7‐6 – SAW Occupancy per direction 

SAW‐Occ‐per dir*vol by dir*occ Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

FDW for peds (no scramble) EW: 13 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

FDW for peds (no scramble) NS: 19 

Total delay 

Car 8400 7062 9348 6226 10313 5697 11287 5349 12268 5122 

Bus 9740 10371 10898 12947 12069 15788 13250 18801 14437 21947 

Bike 387 322 437 276 486 242 536 215 586 194 

Ped 28200 27404 29180 27469 30301 28021 31516 28898 32797 30002 

Intersection (avg) 17.67 17.08 18.86 17.75 20.11 18.82 21.40 20.15 22.73 21.66 
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Criteria more important ? Scale 
i j A or B (1-9) 
1 2  Car B 3 
1 3  B 2 
1 4  B 2 
1 5  

1 6  

1 7  

1 8  

2 3  Bus A 2 
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2 7  

2 8  

3 4  Bike B 1 
3 5  
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3 8  

Ped 

A B 
Bus 
Bike 
Ped 

Bike 

Ped 

Figure 7‐1 – Priority rankings between modes 
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Figure 7‐2 –AHP results for priority rankings 
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Table 7‐7 – SAW Priority per mode 

SAW‐Priority‐per mode*vol by dir*occ Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

FDW for peds (no scramble) EW: 13 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

FDW for peds (no scramble) NS: 19 

Total delay 

Car 10100 8778 11248 8238 12415 8056 13593 8086 14779 8260 

Bus 45405 39462 50564 37035 55809 36214 61106 36349 66437 37132 

Bike 879 731 991 628 1104 550 1217 489 1331 441 

Ped 64014 62208 66238 62354 68783 63607 71541 65598 74448 68105 

Intersection (avg) 15.78 14.57 16.92 14.19 18.10 14.21 19.33 14.49 20.58 14.94 
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Table 7‐8 – SAW Priority per direction 

SAW‐Priority‐per dir*vol by dir*occ Optimal 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

Walk indication for peds (no scramble) EW: 13 16 18 26 23 36 28 46 33 56 

FDW for peds (no scramble) EW: 13 

Walk indication for peds (no scramble) NS: 7 4 12 4 17 4 22 4 27 4 

FDW for peds (no scramble) NS: 19 

Total delay 

Car 10248 8616 11405 7596 12581 6950 13770 6526 14967 6248 

Bus 41299 43972 46205 54897 51174 66942 56181 79715 61213 93054 

Bike 879 731 991 628 1104 550 1217 489 1331 441 

Ped 64014 62208 66238 62354 68783 63607 71541 65598 74448 68105 

Intersection (avg) 15.89 15.77 17.04 17.13 18.24 18.84 19.48 20.79 20.74 22.91 
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Table 7‐9 – Delay inputs for AHP & TOPSIS 

Timing 1 2 3 4 5 6 7 8 9 10 

Scramble No [0]/Yes [1]: 0 0 0 0 0 0 0 0 0 0 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 29 31 39 36 49 41 59 46 69 

Effective green NB/SB: 26 23 31 23 36 23 41 23 46 23 

AHP, TOPSIS Unit, Occ, Pri delay (per mode delay) 

Car 11.64 10.12 12.96 9.49 14.31 9.28 15.66 9.32 17.03 9.52 

Bus 23.28 20.23 25.92 18.99 28.61 18.57 31.33 18.64 34.06 19.04 

Bike 9.68 8.05 10.92 6.91 12.16 6.05 13.41 5.39 14.65 4.85 

Ped 23.11 22.46 23.92 22.52 24.84 22.97 25.83 23.69 26.88 24.59 

Intersection 18.89 17.91 19.88 17.71 20.95 17.91 22.08 18.36 23.24 18.99 

AHP, TOPSIS Unit, Occ, Pri delay (per dir delay) 

Car 11.81 9.93 13.14 8.75 14.50 8.01 15.87 7.52 17.25 7.20 

Bus 10.59 11.27 11.85 14.07 13.12 17.16 14.40 20.44 15.69 23.86 

Bike 9.68 8.05 10.92 6.91 12.16 6.05 13.41 5.39 14.65 4.85 

Ped 23.11 22.46 23.92 22.52 24.84 22.97 25.83 23.69 26.88 24.59 

Intersection (avg) 18.89 17.91 19.88 17.71 20.95 17.91 22.08 18.36 23.24 18.99 
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Table 7‐10 – Inputs for mode weighting for AHP & TOPSIS 

Unit: volumes 

Car 569 

Bus 92 

Bike 40 

Ped 1216 

Occupancy: vol*occ 

Car 711 

Bus (no x2) 460 

Bike 40 

Ped 1216 

Priority: vol*priority*occ 

Car 868 

Bus (no x2) 1950 

Bike 91 

Ped 2760 
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1 2 3 4 

Criteria more important ? Scale 
i j A or B (1-9) 
1 2  Car A 6 
1 3  A 9 
1 4  B 2 
1 5  

1 6  

1 7  

1 8  

2 3  Bus A 2 
2 4  B 9 
2 5  

2 6  

2 7  

2 8  

3 4  Bike B 9 
3 5  

3 6  

3 7  

3 8  

Ped 

A B 
Bus 
Bike 
Ped 

Bike 

Ped 

Figure 7‐3 – Unit‐based rankings between modes 

Matrix C
ar

B
u

s

B
ik

e

P
ed normalized 

principal
Eigenvector 

1 6 9 1/2 

1/6 1 2 1/9 

1/9 1/2 1 1/9 

2 9 9 1 

Car 1 

Bus 2 

Bike 3 

Ped 4 

34.49% 

6.65% 

4.30% 

54.56% 

Figure 7‐4 – AHP results for unit‐based rankings 
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1 2 3 4 

Criteria more important ? Scale 
i j A or B (1-9) 
1 2  Car A 2 
1 3  A 9 
1 4  B 2 
1 5  

1 6  

1 7  

1 8  

2 3  Bus A 9 
2 4  B 3 
2 5  

2 6  

2 7  

2 8  

3 4  Bike B 9 
3 5  

3 6  

3 7  

3 8  

Ped 

A B 
Bus 
Bike 
Ped 

Bike 

Ped 

Figure 7‐5 – Occupancy‐based rankings between modes 

Matrix C
ar

B
u

s

B
ik

e

P
ed normalized 

principal
Eigenvector 

1 2 9 1/2 

1/2 1 9 1/3 

1/9 1/9 1 1/9 

2 3 9 1 

Car 1 

Bus 2 

Bike 3 

Ped 4 

29.73% 

19.53% 

3.41% 

47.33% 

Figure 7‐6 – AHP results for occupancy‐based rankings 
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1 2 3 4 

Criteria more important ? Scale 
i j A or B (1-9) 
1 2  Car B 2 
1 3  A 9 
1 4  B 3 
1 5  

1 6  

1 7  

1 8  

2 3  Bus A 9 
2 4  B 2 
2 5  

2 6  

2 7  

2 8  

3 4  Bike B 9 
3 5  

3 6  

3 7  

3 8  

Ped 

A B 
Bus 
Bike 
Ped 

Bike 

Ped 

Figure 7‐7 – Priority‐based rankings between modes 

Matrix C
ar

B
u

s

B
ik

e

P
ed normalized 

principal
Eigenvector 

1 1/2 9 1/3 

2 1 9 1/2 

1/9 1/9 1 1/9 

3 2 9 1 

Car 1 

Bus 2 

Bike 3 

Ped 4 

19.53% 

29.73% 

3.41% 

47.33% 

Figure 7‐8 – AHP results for priority‐based rankings 
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Matrix normalized 
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6-
36

80
-4

9-
23

90
-4

1-
41

90
-5

9-
23

10
0-

46
-4

6

10
0-

69
-2

3 

principal 
Eigenvector 

1  2  3  4  5  6  7  8  9  10  

60-26-26 1 1 1/2 2 1/4 4 1/6 3 1/5 5 1/3 

2 1 3 1/3 5 1/5 4 1/4 6 1/2 

1/2 1/3 1 1/5 3 1/7 2 1/6 4 1/4 

4  3  5  1  7  1/3  6  1/2  8  2  

1/4 1/5 1/3 1/7 1 1/9 1/2 1/8 2 1/6 

6 5 7 3 9 1 8 2 9 4 

1/3 1/4 1/2 1/6 2 1/8 1 1/7 3 1/5 

5  4  6  2  8  1/2  7  1  9  3  

1/5 1/6 1/4 1/8 1/2 1/9 1/3 1/9 1 1/7 

3 2 4 1/2 6 1/4 5 1/3 7 1 

5.35% 

7.64% 

3.75% 

60-29-23 2 

70-31-31 3 

15.37% 70-39-23  4  

1.93% 80-36-36 5 

29.44% 80-49-23  6  

2.66% 90-41-41 7 

21.50% 90-59-23 8 

1.49% 100-46-46 9 

10.87% 100-69-23 10 

Figure 7‐9 – AHP results for per mode delay rankings for car 
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normalized 
principal 

Eigenvector 

Matrix 

1  2  3  4  5  6  7  8  9  10  

60-26-26 1 1 1/2 2 1/4 3 1/6 4 1/5 5 1/3 

2 1 3 1/3 4 1/5 5 1/4 6 1/2 

1/2 1/3 1 1/5 2 1/7 3 1/6 4 1/4 

4  3  5  1  6  1/3  7  1/2  8  2  

1/3 1/4 1/2 1/6 1 1/8 2 1/7 3 1/5 

6 5 7 3 8 1 9 2 9 4 

1/4 1/5 1/3 1/7 1/2 1/9 1 1/8 2 1/6 

5  4  6  2  7  1/2  8  1  9  3  

1/5 1/6 1/4 1/8 1/3 1/9 1/2 1/9 1 1/7 

3 2 4 1/2 5 1/4 6 1/3 7 1 

5.35% 

7.64% 

3.75% 

60-29-23 2 

70-31-31 3 

15.37% 70-39-23  4  

2.66% 80-36-36 5 

29.44% 80-49-23  6  

1.93% 90-41-41 7 

21.50% 90-59-23 8 

1.49% 100-46-46 9 

10.87% 100-69-23 10 

Figure 7‐10 – AHP results for per mode delay rankings for bus 
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Matrix normalized 
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principal 
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1  2  3  4  5  6  7  8  9  10  

60-26-26 1 1 1/2 2 1/3 3 1/4 4 1/5 5 1/6 

2 1 3 1/2 4 1/3 5 1/4 6 1/5 

1/2 1/3 1 1/4 2 1/5 3 1/6 4 1/7 

3  2  4  1  5  1/2  6  1/3  7  1/4  

1/3 1/4 1/2 1/5 1 1/6 2 1/7 3 1/8 

4  3  5  2  6  1  7  1/2  8  1/3  

1/4 1/5 1/3 1/6 1/2 1/7 1 1/8 2 1/9 

5  4  6  3  7  2  8  1  9  1/2  

1/5 1/6 1/4 1/7 1/3 1/8 1/2 1/9 1 1/9 

6 5 7 4 8 3 9 2 9 1 

5.35% 

7.64% 

3.75% 

60-29-23 2 

70-31-31 3 

10.87% 70-39-23  4  

2.66% 80-36-36 5 

15.37% 80-49-23  6  

1.93% 90-41-41 7 

21.50% 90-59-23 8 

1.49% 100-46-46 9 

29.44% 100-69-23 10 

Figure 7‐11 – AHP results for per mode delay rankings for bike 
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normalized 
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1  2  3  4  5  6  7  8  9  10  

60-26-26 1 1 1/4 3 1/3 5 1/2 6 2 7 4 

4 1 6 2 8 3 9 5 9 7 

1/3 1/6 1 1/5 3 1/4 4 1/2 5 2 

3  1/2  5  1  7  2  8  4  9  6  

1/5 1/8 1/3 1/7 1 1/6 2 1/4 3 1/2 

2 1/3 4 1/2 6 1 7 3 8 5 

1/6 1/9 1/4 1/8 1/2 1/7 1 1/5 2 1/3 

1/2 1/5 2 1/4 4 1/3 5 1 6 3 

1/7 1/9 1/5 1/9 1/3 1/8 1/2 1/6 1 1/4 

1/4 1/7 1/2 1/6 2 1/5 3 1/3 4 1 

10.87% 

29.44% 60-29-23  2  

5.35% 70-31-31 3 

21.50% 70-39-23  4  

2.66% 80-36-36 5 

15.37% 80-49-23 6 

1.93% 

7.64% 

1.49% 

3.75% 

90-41-41 7 

90-59-23 8 

100-46-46 9 

100-69-23 10 

Figure 7‐12 – AHP results for per mode delay rankings for ped 
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Criteria 
P
o
lic
ie
s 

P
o
lic
ie
s 

P
o
lic
ie
s 

Car Bus Bike Ped Criteria Ranking Overall Weights Policies 
1 0.0535 0.0535 0.0535 0.1087 0.084 60‐26‐26 
2 0.0764 0.0764 0.0764 0.2944 0.195 60‐29‐23 
3 0.0375 0.0375 0.0375 0.0535 0.046 70‐31‐31 
4 0.1537 0.1537 0.1087 0.2150 0.3449 Car 0.185 70‐39‐23 
5 0.0193 0.0266 0.0266 0.0266 * 0.0665 Bus = 0.024 80‐36‐36 
6 0.2944 0.2944 0.1537 0.1537 0.0430 Bike 0.212 80‐49‐23 
7 0.0266 0.0193 0.0193 0.0193 0.5456 Ped 0.022 90‐41‐41 
8 0.2150 0.2150 0.2150 0.0764 0.139 90‐59‐23 
9 0.0149 0.0149 0.0149 0.0149 0.015 100‐46‐46 
10 0.1087 0.1087 0.2944 0.0375 0.078 100‐69‐23 

Figure 7‐13 – AHP end result for per mode delays for unit‐based 

Criteria 
Car Bus Bike Ped Criteria Ranking Overall Weights Policies 

1 0.0535 0.0535 0.0535 0.1087 0.080 60‐26‐26 
2 0.0764 0.0764 0.0764 0.2944 0.180 60‐29‐23 
3 0.0375 0.0375 0.0375 0.0535 0.045 70‐31‐31 
4 0.1537 0.1537 0.1087 0.2150 0.2973 Car 0.181 70‐39‐23 
5 0.0193 0.0266 0.0266 0.0266 * 0.1953 Bus = 0.024 80‐36‐36 
6 0.2944 0.2944 0.1537 0.1537 0.0341 Bike 0.223 80‐49‐23 
7 0.0266 0.0193 0.0193 0.0193 0.4733 Ped 0.021 90‐41‐41 
8 0.2150 0.2150 0.2150 0.0764 0.149 90‐59‐23 
9 0.0149 0.0149 0.0149 0.0149 0.015 100‐46‐46 
10 0.1087 0.1087 0.2944 0.0375 0.081 100‐69‐23 

Figure 7‐14 – AHP end result for per mode delays for occupancy‐based 

Criteria 
Car Bus Bike Ped Criteria Ranking Overall Weights Policies 

1 0.0535 0.0535 0.0535 0.1087 0.080 60‐26‐26 
2 0.0764 0.0764 0.0764 0.2944 0.179 60‐29‐23 
3 0.0375 0.0375 0.0375 0.0535 0.045 70‐31‐31 
4 0.1537 0.1537 0.1087 0.2150 0.1950 Car 0.181 70‐39‐23 
5 0.0193 0.0266 0.0266 0.0266 * 0.2970 Bus = 0.025 80‐36‐36 
6 0.2944 0.2944 0.1537 0.1537 0.0340 Bike 0.223 80‐49‐23 
7 0.0266 0.0193 0.0193 0.0193 0.4730 Ped 0.021 90‐41‐41 
8 0.2150 0.2150 0.2150 0.0764 0.149 90‐59‐23 
9 0.0149 0.0149 0.0149 0.0149 0.015 100‐46‐46 
10 0.1087 0.1087 0.2944 0.0375 0.081 100‐69‐23 

Figure 7‐15 – AHP end result for per mode delays for priority‐based 
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Matrix normalized 
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2 1 3 1/2 4 1/3 5 1/4 6 1/5 

1/2 1/3 1 1/4 2 1/5 3 1/6 4 1/7 

3  2  4  1  5  1/2  6  1/3  7  1/4  

1/3 1/4 1/2 1/5 1 1/6 2 1/7 3 1/8 

4  3  5  2  6  1  7  1/2  8  1/3  

1/4 1/5 1/3 1/6 1/2 1/7 1 1/8 2 1/9 

5  4  6  3  7  2  8  1  9  1/2  

1/5 1/6 1/4 1/7 1/3 1/8 1/2 1/9 1 1/9 

6 5 7 4 8 3 9 2 9 1 

5.35% 

7.64% 

3.75% 

60-29-23 2 

70-31-31 3 

10.87% 70-39-23  4  

2.66% 80-36-36 5 

15.37% 80-49-23  6  

1.93% 90-41-41 7 

21.50% 90-59-23 8 

1.49% 100-46-46 9 

29.44% 100-69-23 10 

Figure 7‐16 – AHP results for per direction delay rankings for car 
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normalized 
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Matrix 

1  2  3  4  5  6  7  8  9  10  

60-26-26  1  1  2  3  5  4  8  6  9  7  9  

1/2  1  2  4  3  7  5  8  6  9  

1/3  1/2  1  3  2  6  4  7  5  8  

1/5 1/4 1/3 1 1/2 4 2 5 3 6 

1/4 1/3 1/2 2 1 5 3 6 4 7 

1/8 1/7 1/6 1/4 1/5 1 1/3 2 1/2 3 

1/6 1/5 1/4 1/2 1/3 3 1 4 2 5 

1/9 1/8 1/7 1/5 1/6 1/2 1/4 1 1/3 2 

1/7 1/6 1/5 1/3 1/4 2 1/2 3 1 4 

1/9 1/9 1/8 1/6 1/7 1/3 1/5 1/2 1/4 1 

29.44% 

21.50% 60-29-23  2  

15.37% 70-31-31  3  

7.64% 70-39-23 4 

10.87% 80-36-36 5 

2.66% 
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1.49% 

80-49-23 6 
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90-59-23 8 

100-46-46 9 

100-69-23 10 

Figure 7‐17 – AHP results for per direction delay rankings for bus 
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Matrix normalized 
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3  2  4  1  5  1/2  6  1/3  7  1/4  

1/3 1/4 1/2 1/5 1 1/6 2 1/7 3 1/8 

4  3  5  2  6  1  7  1/2  8  1/3  

1/4 1/5 1/3 1/6 1/2 1/7 1 1/8 2 1/9 

5  4  6  3  7  2  8  1  9  1/2  

1/5 1/6 1/4 1/7 1/3 1/8 1/2 1/9 1 1/9 

6 5 7 4 8 3 9 2 9 1 
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10.87% 70-39-23  4  
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1.49% 100-46-46 9 

29.44% 100-69-23 10 

Figure 7‐18 – AHP results for per direction delay rankings for bike 
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4 1 6 2 8 3 9 5 9 7 

1/3 1/6 1 1/5 3 1/4 4 1/2 5 2 

3  1/2  5  1  7  2  8  4  9  6  

1/5 1/8 1/3 1/7 1 1/6 2 1/4 3 1/2 

2 1/3 4 1/2 6 1 7 3 8 5 

1/6 1/9 1/4 1/8 1/2 1/7 1 1/5 2 1/3 

1/2 1/5 2 1/4 4 1/3 5 1 6 3 
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Figure 7‐19 – AHP results for per mode delay rankings for ped 
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Criteria 
P
o
lic
ie
s 

P
o
lic
ie
s 

P
o
lic
ie
s 

Car Bus Bike Ped Criteria Ranking Overall Weights Policies 
1 0.0535 0.2944 0.0535 0.1087 0.100 60‐26‐26 
2 0.0764 0.2150 0.0764 0.2944 0.205 60‐29‐23 
3 0.0375 0.1537 0.0375 0.0535 0.054 70‐31‐31 
4 0.1087 0.0764 0.1087 0.2150 0.3449 Car 0.165 70‐39‐23 
5 0.0266 0.1087 0.0266 0.0266 * 0.0665 Bus = 0.032 80‐36‐36 
6 0.1537 0.0266 0.1537 0.1537 0.0430 Bike 0.145 80‐49‐23 
7 0.0193 0.0535 0.0193 0.0193 0.5456 Ped 0.022 90‐41‐41 
8 0.2150 0.0193 0.2150 0.0764 0.126 90‐59‐23 
9 0.0149 0.0375 0.0149 0.0149 0.016 100‐46‐46 
10 0.2944 0.0149 0.2944 0.0375 0.136 100‐69‐23 

Figure 7‐20 – AHP end result for per direction delays for unit‐based 

Criteria 
Car Bus Bike Ped Criteria Ranking Overall Weights Policies 

1 0.0535 0.2944 0.0535 0.1087 0.127 60‐26‐26 
2 0.0764 0.2150 0.0764 0.2944 0.207 60‐29‐23 
3 0.0375 0.1537 0.0375 0.0535 0.068 70‐31‐31 
4 0.1087 0.0764 0.1087 0.2150 0.2973 Car 0.153 70‐39‐23 
5 0.0266 0.1087 0.0266 0.0266 * 0.1953 Bus = 0.043 80‐36‐36 
6 0.1537 0.0266 0.1537 0.1537 0.0341 Bike 0.129 80‐49‐23 
7 0.0193 0.0535 0.0193 0.0193 0.4733 Ped 0.026 90‐41‐41 
8 0.2150 0.0193 0.2150 0.0764 0.111 90‐59‐23 
9 0.0149 0.0375 0.0149 0.0149 0.019 100‐46‐46 
10 0.2944 0.0149 0.2944 0.0375 0.118 100‐69‐23 

Figure 7‐21 – AHP end result for per direction delays for occupancy‐based 

Criteria 
Car Bus Bike Ped Criteria Ranking Overall Weights Policies 

1 0.0535 0.2944 0.0535 0.1087 0.151 60‐26‐26 
2 0.0764 0.2150 0.0764 0.2944 0.221 60‐29‐23 
3 0.0375 0.1537 0.0375 0.0535 0.080 70‐31‐31 
4 0.1087 0.0764 0.1087 0.2150 0.1950 Car 0.149 70‐39‐23 
5 0.0266 0.1087 0.0266 0.0266 * 0.2970 Bus = 0.051 80‐36‐36 
6 0.1537 0.0266 0.1537 0.1537 0.0340 Bike 0.116 80‐49‐23 
7 0.0193 0.0535 0.0193 0.0193 0.4730 Ped 0.029 90‐41‐41 
8 0.2150 0.0193 0.2150 0.0764 0.091 90‐59‐23 
9 0.0149 0.0375 0.0149 0.0149 0.022 100‐46‐46 
10 0.2944 0.0149 0.2944 0.0375 0.090 100‐69‐23 

Figure 7‐22 – AHP end result for per direction delays for priority‐based 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 60-29-23 70-31-31 

SAW 
TOPSIS 
70-39-23 80-36-36 

AHP 
80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.346 11.6398 10.1164 12.9624 9.49424 14.307 9.28366 15.6649 9.3184 17.0317 9.51895 

2 Bus 0.066 23.2796 20.2329 25.9249 18.9885 28.6139 18.5673 31.3298 18.6368 34.0634 19.0379 

3 Bike 0.043 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.546 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.71 0.89 0.54 0.96 0.37 0.95 0.19 0.89 0.00 0.82 

Figure 7‐23 – TOPSIS results with SAW & AHP optimals for Unit‐based, per mode 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 
AHP 

60-29-23 70-31-31 
SAW 

70-39-23 80-36-36 
TOPSIS 
80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.346 11.81 9.92954 13.1431 8.75388 14.4991 8.01 15.8691 7.52091 17.2483 7.20099 

2 Bus 0.066 10.5873 11.2724 11.8451 14.0732 13.1188 17.161 14.4024 20.4355 15.6923 23.855 

3 Bike 0.043 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.546 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.58 0.75 0.45 0.85 0.32 0.88 0.19 0.85 0.10 0.80 

Figure 7‐24 – TOPSIS results with SAW & AHP optimals for Unit‐based, per direction 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 60-29-23 70-31-31 

SAW 
TOPSIS 
70-39-23 80-36-36 

AHP 
80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.297 11.6398 10.1164 12.9624 9.49424 14.307 9.28366 15.6649 9.3184 17.0317 9.51895 

2 Bus 0.195 23.2796 20.2329 25.9249 18.9885 28.6139 18.5673 31.3298 18.6368 34.0634 19.0379 

3 Bike 0.034 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.473 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.708 0.892 0.540 0.961 0.365 0.957 0.184 0.907 0.000 0.842 

Figure 7‐25 – TOPSIS results with SAW & AHP optimals for Occupancy‐based, per mode 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 

SAW 
AHP 

60-29-23 70-31-31 
TOPSIS 
70-39-23 80-36-36 80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.297 11.81 9.92954 13.1431 8.75388 14.4991 8.01 15.8691 7.52091 17.2483 7.20099 

2 Bus 0.195 10.5873 11.2724 11.8451 14.0732 13.1188 17.161 14.4024 20.4355 15.6923 23.855 

3 Bike 0.034 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.473 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.66 0.79 0.55 0.82 0.45 0.75 0.35 0.67 0.27 0.60 

Figure 7‐26 – TOPSIS results with SAW & AHP optimals for Occupancy‐based, per direction 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 60-29-23 70-31-31 

SAW 
TOPSIS 
70-39-23 80-36-36 

AHP 
80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.195 11.6398 10.1164 12.9624 9.49424 14.307 9.28366 15.6649 9.3184 17.0317 9.51895 

2 Bus 0.297 23.2796 20.2329 25.9249 18.9885 28.6139 18.5673 31.3298 18.6368 34.0634 19.0379 

3 Bike 0.034 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.473 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.708 0.892 0.540 0.962 0.365 0.957 0.184 0.907 0.000 0.842 

Figure 7‐27 – TOPSIS results with SAW & AHP optimals for Priority‐based, per mode 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 

SAW 
AHP 

TOPSIS 
60-29-23 70-31-31 70-39-23 80-36-36 80-49-23 90-41-41 90-59-23 100-46-46 100-69-23 

C
ri

te
ri

a:

1 Car 0.195 11.81 9.92954 13.1431 8.75388 14.4991 8.01 15.8691 7.52091 17.2483 7.20099 

2 Bus 0.297 10.5873 11.2724 11.8451 14.0732 13.1188 17.161 14.4024 20.4355 15.6923 23.855 

3 Bike 0.034 9.68174 8.05386 10.9189 6.91088 12.1608 6.05368 13.4059 5.38699 14.6533 4.85366 

4 Ped 0.473 23.1148 22.4626 23.918 22.5154 24.8368 22.9678 25.8327 23.6867 26.8825 24.592 

Score 0.78 0.85 0.70 0.78 0.60 0.63 0.51 0.50 0.42 0.41 

Figure 7‐28 – TOPSIS results with SAW & AHP optimals for Priority‐based, per direction 
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7.2 Reinforcement Learning Agent 

A series of experiments were analyzed using the reinforcement learning agent described in the 

previous chapter. The same case study used for the MADM methods was also constructed in 

VISSIM and tested with the RL agent, thus similar geometry and demands by mode were 

analyzed. 

For each scenario, the focus of the analysis was centered on the evolution of the agent’s 

knowledge and the improvements in the signal performance over time. Also, the analysis covers 

the actual signal timing settings found during the training period and how the control decisions 

changed over time. 

The agent was allowed to make a new decision every 2 seconds and to operate the signal 

without a maximum green time, but with a minimum green time equal to the crossing time for 

each of the pedestrian crossings. Therefore, once a phase was selected it was maintained for 18 

seconds for the E‐W direction and for 24 seconds for the N‐S direction. The states were scaled 

down by a factor of 1/2, thus for example 2 additional vehicles would be perceived by the agent 

as an increase of 1 in the state. On each direction, the states for vehicles and buses together 

could have a range of values between 0 and 15, for pedestrians between 0 and 5, and for 

bicycles between 0 and 5. 

The relative importance of the modes (wi in the reward structure) was similar to the factors 

found in by AHP for the priority rankings, such that the vehicles were weighted by a factor of 

1.2, buses by 4.2, and bicycles and pedestrians by 2.3; the values of the factors in the penalty 

function were the following: β1 = 1, β2 = 12, β3 = 0.5, and β4 = 0.1. 

Similar to the MADM methods, the observed volumes for each mode were simulated in three 

conditions: 1) actual demands found in the field, called “Vol x1”, 2) double the demands for all 

modes, called “Vol x2”, and 3) triple the demands for all modes, called “Vol x3”. 
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Based on preliminary results, it was estimated that the agents would require about 200 

replications to reach a plateau in the performance. Cases with lower volumes are expected to 

have a faster convergence because the links do not reach higher occupancies and thus the state 

space visited is smaller. Based on these estimates it was decided to perform 275 replications to 

increase confidence in the values observed on the plateau. Each replication was run for 15 

simulation minutes. 

First, the scenario with the original demands (Vol x1) was simulated. Results for the evolution of 

the duration of the two phases is shown in Figure 7‐29 . A few observations can be made from 

this figure, starting with the little learning that occurred over time. Convergence seemed to 

occur very quickly within the first replications, with a particular pattern of long and short 

durations of the E‐W phase and a steady short duration of the N‐S phase. 

Figure 7‐29 – Agent training – Average Phase duration for field demands (Vol x1) 
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The distribution of the demands by direction is about 89% of the vehicular traffic on the E‐W 

direction and the remaining 11% in the N‐S direction, whereas pedestrian traffic is about 75% in 

the E‐W direction compared to 25% in the N‐S direction. Therefore, traffic is heavily sided to 

the E‐W direction and it is expected to receive additional green time. 

The pattern observed for the N‐S direction in Figure 7‐29 is steady and on par with the 

minimum green time, suggesting that demands are constantly lower than this threshold and 

the minimum duration was enough to process the arriving traffic. However, the pattern 

observed for E‐W shows simulation runs with long green times followed by replications with 

low green times. This indicates that such low traffic volume may result in arrival patterns with 

significant variations, which were in turn replicated by the traffic signal behavior. Recall that the 

vehicular volume per approach in the E‐W direction is only 275 vehicles (for each direction on 

average), which is roughly 40% the capacity of an approach assuming it can process 700 vph in 

ideal conditions and without left turns. 

In terms of the measures of performance, Figure 7‐30 shows the average delay and number of 

stops for all modes combined. Variations in the average delay and stops are significantly lower 

than those seen for the green times, confirming that the system responded to the traffic arrival 

patterns trying to maintain the quality of service. Also, there was no strong correlation between 

replications with shorter green times and lower delays or fewer number of stops, which 

supports this claim. 
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a) Average delay for all modes b) Average number of stops for all modes 

Figure 7‐30 – Agent training – Average delay and number of stops for all modes (Vol x1) 

Further analysis showed that the average delays were very similar for all modes. Results based 

on the last 30 replications showed that average delay for vehicles was 10.1 s, for buses 10.5 s, 

for pedestrians 9.3 s, and for bicyclists 10.6 s. In addition their standard variation for a given 

mode increased as their volume was lower. For example, the standard variation for bicycles was 

6.7 whereas for vehicles it was 2.0. This is expected since modes with low volumes will not have 

a significant contribution in the demands and therefore the signal will not necessarily provide 

the right of way based on their arrivals, but on modes with greater volume. 

Overall, results from the agent showed fast convergence and generated very wide range of 

green times in the E‐W direction, generating delays that were similar for all transportation 

modes and thus providing an equitable service. 

The second case for demands that double the original volumes (Vol x2) is described next. It is 

noted that demands from all modes are multiplied by 2, keeping the demand ratios by direction 

and modes constant. 
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With higher traffic, the number of states visited increased and the learning process lasted for an 

increased number of replications, reaching a plateau around the 50th replication. Similar figures 

were generated for this scenario compared to Vol x1, with the evolution of the phase duration 

shown in Figure 7‐31. The duration of the N‐S phase remained at the bare minimum, 

terminating the phase right after the threshold of 24 seconds was reached. This is similar to the 

case with the original demand levels since the volumes on N‐S are very low to justify 24 seconds 

of green, imposed due to pedestrian clearance requirements. On the other hand, the E‐W 

direction showed significant variations between replications, but with a lower magnitude than 

those observed in the previous case with lower demands. Greater volumes reduce the effects 

of random arrivals in the operation of the signals, and thus the reduction in the green time 

variations was expected. 

Figure 7‐31 – Agent training – Average phase duration for double the field demand (Vol x2) 
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The learning process in terms of performance can be observed in the evolution of the average 

delay and number of stops, as shown in Figure 7‐32. Delays and number of stops decreased 

over time, reaching levels that were higher than in the previous case, but similar in magnitude. 

The scale of the figures for this case is the same as those with the original volumes from the 

field, thus they are directly comparable. 

Regarding the delay distribution by mode, in the last 30 replications the average delays were 

11.7 s for vehicles, 12.6 for buses, 10.1 for pedestrians, and 14.2 for bicycles. Similarly, the 

standard deviation of the delay for bicycles and buses were the greatest, 5.61 and 4.70 

respectively, compared to automobiles (1.59) and pedestrians (0.97). 

Overall, this scenario showed a somewhat signal behavior given the higher volumes, and the 

performance of the modes was balanced and with small increases in the delays compared to 

the previous case. The learning behavior of the agents was more notorious and can be 

appreciated during a greater number of replications. 

a) Average delay for all modes b) Average number of stops for all modes 

Figure 7‐32 – Agent training – Average delay and number of stops for all modes (Vol x2) 
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Lastly, the scenario with three times the demands found in the field was analyzed (vol x3). For 

this scenario, links on the E‐W direction had longer queues and the allocated number of 

potential states in this direction (a total of 15 states with a scale factor of 1/2) was quickly filled 

in the E‐W when the green indication was given to the N‐S direction. Therefore, it was decided 

to scale down all modes by a factor of 1/3, instead of a factor of 1/2 used for the previous 

cases. This allowed the agent to observe changes in the state when up to 45 vehicles were 

sensed in the E‐W direction, instead of only 30 vehicles. Given that scale change was applied to 

all modes, comparisons to previous cases are still valid. Another alternative to modify the agent 

for higher volumes was to increase the range of values for the E‐W space, but this will void fair 

comparisons with the previous cases. 

Results for the duration of the green times in the two phases during the training period are 

shown in Figure 7‐33. Significant variation was found in the average green times in the E‐W 

direction, contrasted with a steady low value for the N‐S direction. This trend is similar to the 

Vol x2 case, but the average green times in the E‐W direction for the Vol x3 case in last 30 

replications was 53 seconds (ranging between 35 and 71 seconds) compared 46 seconds in the 

Vol x2 case (ranging between 28 to 64 seconds). Thus, as expected, cycles lengths increased in 

the Vol x3 case compared to the Vol x2 case. 
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Figure 7‐33 – Agent training – Average phase duration for triple the field demand (Vol x3) 

In terms of the average delay and number of stops, some improvement was achieved 

throughout the replications to reach combined levels that were higher than in the previous case 

(Vol x2), as seen in Figure 7‐34. This was expected given the higher demands and longer 

queues. A closer observation of the delays per mode showed that they increased proportionally 

with exception of the pedestrian delays. Based on the last 30 replications, vehicles experienced 

on average 16.5 seconds of delay, buses 16.8 seconds, pedestrians 10.1 seconds, and bicycles 

16.2 seconds. 

89 



 

      

                                                         

                                 

 

 

 

 

 

 

 

   

a) Average delay for all modes b) Average number of stops for all modes 

Figure 7‐34 – Agent training – Average delay and number of stops for all modes (Vol x3) 
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8 ADDITIONAL	WORK	 

Additional work involving sensitivity analysis of signal timing was carried out as an extension of 

the project. The work involved running the aforementioned analytical program to determine 

the occasions at which an intersection operating with a scramble phase is preferred to one 

without. This expands upon the work carried out by Yang and Benekohal (2011), where genetic 

algorithms were used to determine the optimal intersection operation mode (with or without a 

scramble phase), by including varying cycle lengths and a new pedestrian delay formula. A 

hypothetical standard intersection was simulated with one exclusive left, through, and right‐

turn lane in each of four approaches all with the same vehicular and pedestrian volume for 

each approach. Three runs were performed for different through volumes: 200, 700, and 1200 

vehicles per hour. Right‐turning traffic varied from 200 to 1200 vehicles per hour with intervals 

of 250. Pedestrian demand varied from 400 to 2000 pedestrians in each parallel crossing with 

intervals of 400. When a scramble crossing was applied, the pedestrian demand from each 

corner was split evenly between the two parallel crosswalks and the diagonal. 

In addition, left turns remained the same throughout all iterations at 100 left turns per 

approach to reduce excessive cycle lengths as a result of protected left turn phases. To provide 

adequate service time for these vehicles, the length of these phases were determined by giving 

two seconds for each left‐turner arriving per cycle, with an additional three seconds for startup 

lost time. Three seconds of change and clearance were present after each phase. All other 

signal timing characteristics were similar to the previous implementation. 

The following charts illustrate this analysis, where the optimal cycle length and operation mode 

corresponds with the lowest intersection delay for all modes. A practitioner would in theory 
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first find the optimal cycle length for the given volumes, and then use the next chart to find the 

walk time. Figure 8‐1, Figure 8‐3, and Figure 8‐5 show the optimal cycle length that is chosen 

for a respective demand. Figure 8‐2, Figure 8‐4, and Figure 8‐6 show whether the optimal 

operation is with or without a scramble, and if it is with a scramble, then the duration of that 

length. In the walk time charts, the dark blue (0 seconds of walk time) represents no scramble. 

A couple of trends are very noticeable from these charts: As the through volume increases, the 

minimum cycle length for the lowest right‐turn and pedestrian volumes goes from 70 seconds 

to 120 seconds to 160 seconds; and as the right‐turn volume increases, the optimal cycle length 

also increases due to the greater volume and conflicts with pedestrians. There appears to be 

less of a clear trend as pedestrian volume increases, possibly indicating that for this volume 

condition, increasing pedestrians do not affect delays as much as increasing vehicular volumes 

does. However, based on the no scramble/scramble mode and walk time charts, it is noted 

that increased pedestrians are accounted for in the increased length of the scramble phase. For 

example, there is a gradual change from no scramble and a scramble phase with 6 seconds of 

walk to as much as a scramble phase with 16 seconds of walk. Increasing pedestrian volume 

but keeping right‐turning volume constant increases the length of the scramble but the cycle 

length is generally kept the same to prevent additional delay to all users. A possible 

explanation on why the scramble length remains mostly constant when right‐turning vehicles 

increase is that the pedestrians remain the same, so there is no need to extend the walk 

indication for pedestrians (although there is a need to increase cycle length). 
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Figure 8‐1 – Optimal cycle length for 200 Thru 

Figure 8‐2 – Optimal operation mode and walk time for 200 Thru 
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Figure 8‐3 – Optimal cycle length for 700 Thru 

Figure 8‐4 – Optimal operation mode and walk time for 700 Thru 
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Figure 8‐5 – Optimal cycle length for 1200 Thru 

Figure 8‐6 – Optimal operation mode and walk time for 1200 Thru 
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9 CONCLUSIONS	 

Results indicate that all three analytical MADM methods (SAW, AHP, and TOPSIS) selected 

signal timing settings that followed general expectations in terms of cycle length and green 

time splits; however, their optimal alternatives were not always the same. The sensitivity of the 

solutions also varied across strategies, with SAW and TOPSIS being more sensitive than AHP. 

SAW and TOPSIS are well‐suited for optimal selection of multi‐modal signal timing parameters 

because they can deal with multiple criteria (modes of transportation and their characteristics) 

and large number of alternatives with simplicity. In TOPSIS, the utility of each mode is assumed 

to linearly increase or decrease across the range of alternatives, thus special consideration 

should be given to non‐linear functions. While SAW considers each alternative separately, 

TOPSIS uses all alternatives together to normalize their utility, therefore a more careful and 

comprehensive selection of alternatives is required. 

AHP allows inputs based on qualitative and quantitative comparisons between alternatives or 

modes, but it requires an extensive number of pairwise comparisons for problems with large 

number of alternatives. Matrix manipulations may also be an issue if many alternatives are 

considered at a given time. However, the method is less subject to variation when the reliability 

of the input data is questionable and when the alternatives are not evenly distributed across 

the utility range. 

The results from this study support the potential application of the MADM methods as an 

alternative to more traditional approaches; however, further research is recommended to 
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extend them for multimodal traffic control. Also, the sensitivity charts provided in Chapter 8 

illustrate the cases in which a scramble pedestrian phase is beneficial for all modes combined. 

However, additional analysis of multiple configurations and scenarios are needed to develop 

strong guidelines that are practice‐ready. 

In terms of the agent‐based strategy to control the signals, results showed that the agent 

effectively balanced delays for all modes and was sensitive to changes in the demands. Average 

delays and number of stops per mode obtained with the agent‐based approach confirmed that 

the green time variations responded to variability in the demand, since the delays were 

relatively stable for all replications once a performance plateau was reached. Overall, the 

agent‐based approach showed potential for multi‐modal applications and it is appealing since it 

reacts in real time to changes in the traffic conditions of all modes. 

Further studies on parameter selection and alternative algorithms are needed to strengthen 

the resources available to researchers and practitioners, and to generate stronger guidelines on 

how to use these types of cycle‐free and adaptive strategies in a real world intersection. 

Additional research is also recommended to include a multimodal analysis along a corridor and 

in networks with closely‐spaced intersections, where coordination of green times between 

adjacent signals is important. 
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Table 11‐1 – v/c ratios for saturated (volume x3) 

Cycle length: 60 60 70 70 80 80 90 90 100 100 

Effective green EB/WB: 26 28 31 38 36 48 41 58 46 68 

Effective green NB/SB: 26 24 31 24 36 24 41 24 46 24 

Walk indication for peds (no scramble) EW: 13 15 18 25 23 35 28 45 33 55 

Walk indication for peds (no scramble) NS: 7 5 12 5 17 5 22 5 27 5 

X=v/c for EB_T: 0.736 0.683 0.720 0.588 0.709 0.532 0.700 0.495 0.693 0.476 

X=v/c for EB_R: 0.143 0.124 0.137 0.096 0.133 0.082 0.130 0.073 0.127 0.069 

X=v/c for WB_T: 0.962 0.893 0.941 0.768 0.926 0.695 0.915 0.647 0.906 0.622 

X=v/c for WB_R: 1.226 1.067 1.176 0.824 1.141 0.703 1.115 0.631 1.096 0.596 

X=v/c for NB_T: 0.091 0.099 0.089 0.115 0.088 0.132 0.087 0.148 0.086 0.158 

X=v/c for NB_R: 0.244 0.272 0.237 0.337 0.232 0.412 0.228 0.496 0.226 0.553 

X=v/c for SB_T: 0.179 0.193 0.175 0.226 0.172 0.258 0.170 0.290 0.168 0.309 

Table 11‐2 – v/c ratios for oversaturated (volume x4) 

Cycle length: 70 70 80 80 90 90 90 100 100 110 

Effective green EB/WB: 31 37 36 47 41 56 57 46 67 76 

Effective green NB/SB: 31 25 36 25 41 26 25 46 25 26 

Walk indication for peds (no scramble) EW: 18 24 23 34 28 43 44 33 54 63 

Walk indication for peds (no scramble) NS: 12 6 17 6 22 7 6 27 6 7 

X=v/c for EB_T: 0.960 0.805 0.945 0.724 0.934 0.683 0.671 0.924 0.635 0.616 

X=v/c for EB_R: 0.258 0.170 0.247 0.138 0.240 0.124 0.120 0.234 0.109 0.103 

X=v/c for WB_T: 1.255 1.051 1.235 0.946 1.220 0.893 0.878 1.208 0.830 0.804 

X=v/c for WB_R: 2.219 1.465 2.128 1.187 2.062 1.067 1.034 2.013 0.937 0.890 

X=v/c for NB_T: 0.119 0.147 0.117 0.168 0.116 0.182 0.189 0.114 0.211 0.223 

X=v/c for NB_R: 0.353 0.493 0.345 0.619 0.339 0.716 0.773 0.334 0.964 1.095 

X=v/c for SB_T: 0.233 0.289 0.229 0.330 0.226 0.357 0.371 0.224 0.413 0.436 
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1 2 3 4 5 6 7 8 9 10 

60-26-26 60-28-24 70-31-31 
AHP 

70-38-24 80-36-36 

SAW 
TOPSIS 
80-48-24 90-41-41 90-58-24 100-46-46 100-68-24 

C
ri

te
ri

a:

1 Car 0.345 43.8038 30.4139 41.5236 18.52 40.7143 15.692 40.74 14.733 41.2803 14.8558 

2 Bus 0.066 87.6076 60.8278 83.0471 37.04 81.4287 31.3841 81.48 29.466 82.5607 29.7116 

3 Bike 0.043 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.546 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.22 0.51 0.20 0.87 0.17 0.96 0.12 0.93 0.08 0.88 

Figure 11‐1 – TOPSIS results with SAW & AHP optimals for Unit‐based, per mode (volume x3) 

Im
p

o
rt

an
ce

 

Options: 

1 2 3 4 5 6 7 8 9 10
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70-38-24 80-36-36 

SAW 
TOPSIS 
80-48-24 90-41-41 90-58-24 100-46-46 100-68-24 

C
ri

te
ri

a:

1 Car 0.345 45.1079 31.0523 42.7484 18.2125 41.9151 14.6087 41.9449 12.8727 42.5053 12.396 

2 Bus 0.066 35.738 26.4653 33.9484 20.4216 33.2879 22.3923 33.288 26.2389 33.7043 30.0696 

3 Bike 0.043 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.546 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.205 0.477 0.187 0.831 0.157 0.929 0.115 0.927 0.076 0.879 

Figure 11‐2 – TOPSIS results with SAW & AHP optimals for Unit‐based, per direction (volume x3) 
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80-48-24 90-41-41 

SAW 
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1 Car 0.297 43.8038 30.4139 41.5236 18.52 40.7143 15.692 40.74 14.733 41.2803 14.8558 

2 Bus 0.195 87.6076 60.8278 83.0471 37.04 81.4287 31.3841 81.48 29.466 82.5607 29.7116 

3 Bike 0.034 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.473 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.19 0.50 0.18 0.87 0.16 0.96 0.12 0.94 0.08 0.90 

Figure 11‐3 ‐ TOPSIS results with SAW & AHP optimals for Occupancy‐based, per mode (volume x3) 
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1 Car 0.297 45.1079 31.0523 42.7484 18.2125 41.9151 14.6087 41.9449 12.8727 42.5053 12.396 

2 Bus 0.195 35.738 26.4653 33.9484 20.4216 33.2879 22.3923 33.288 26.2389 33.7043 30.0696 

3 Bike 0.034 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.473 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.20 0.49 0.18 0.84 0.16 0.92 0.12 0.88 0.08 0.80 

Figure 11‐4 ‐ TOPSIS results with SAW & AHP optimals for Occupancy‐based, per mode (volume x3) 
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Options: 

1 2 3 4 5 6 7 8 9 10

60-26-26 60-28-24 70-31-31 
AHP 

70-38-24 80-36-36 
TOPSIS 
80-48-24 90-41-41 

SAW 
90-58-24 100-46-46 100-68-24 

C
ri

te
ri

a:

1 Car 0.195 43.8038 30.4139 41.5236 18.52 40.7143 15.692 40.74 14.733 41.2803 14.8558 

2 Bus 0.297 87.6076 60.8278 83.0471 37.04 81.4287 31.3841 81.48 29.466 82.5607 29.7116 

3 Bike 0.034 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.473 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.19 0.50 0.18 0.87 0.16 0.96 0.12 0.94 0.08 0.90 

Figure 11‐5 – TOPSIS results with SAW & AHP optimals for Priority‐based, per mode (volume x3) 
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80-48-24 90-41-41 90-58-24 100-46-46 100-68-24 

C
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ri

a:

1 Car 0.195 45.1079 31.0523 42.7484 18.2125 41.9151 14.6087 41.9449 12.8727 42.5053 12.396 

2 Bus 0.297 35.738 26.4653 33.9484 20.4216 33.2879 22.3923 33.288 26.2389 33.7043 30.0696 

3 Bike 0.034 9.78003 8.6743 11.0297 7.45895 12.2843 6.5477 13.542 5.83919 14.802 5.60049 

4 Ped 0.473 23.6231 23.1477 24.4483 23.0976 25.3918 23.4791 26.4142 24.1481 27.4917 25.0219 

Score 0.24 0.55 0.22 0.87 0.19 0.91 0.14 0.78 0.10 0.67 

Figure 11‐6 – TOPSIS results with SAW & AHP optimals for Priority‐based, per direction (volume x3) 
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Options: 

1 2 3 4 5 6 7 8 9 10

70-31-31 
AHP 

70-37-25 80-36-36 80-47-25 90-41-41 90-56-26 
TOPSIS 
90-57-25 100-46-46 

SAW 
100-67-25 110-76-26 

C
ri

te
ri

a:

1 Car 0.346 149.04 65.2055 141.624 38.6675 136.824 30.7252 28.6166 133.703 25.4929 25.8359 

2 Bus 0.066 298.08 130.411 283.248 77.3351 273.648 61.4504 57.2331 267.406 50.9858 51.6718 

3 Bike 0.043 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.546 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.13 0.69 0.11 0.89 0.11 0.94 0.95 0.12 0.92 0.89 

Figure 11‐7 – TOPSIS results with SAW & AHP optimals for Unit‐based, per mode (volume x4) 
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1 2 3 4 5 6 7 8 9 10

70-31-31 70-37-25 80-36-36 80-47-25 
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90-41-41 90-56-26 
TOPSIS 
90-57-25 100-46-46 100-67-25 

AHP 
110-76-26 

C
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ri

a:

1 Car 0.346 154.761 66.3939 147.033 37.9387 142.026 28.9561 26.3781 138.764 21.0892 19.5231 

2 Bus 0.066 113.661 57.8553 108.169 43.1752 104.654 41.6663 42.4612 102.399 52.7291 64.8794 

3 Bike 0.043 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.546 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.12 0.66 0.11 0.87 0.10 0.92 0.94 0.12 0.92 0.89 

Figure 11‐8 – TOPSIS results with SAW & AHP optimals for Unit‐based, per direction (volume x4) 
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90-57-25 100-46-46 
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AHP 
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1 Car 0.297 149.04 65.2055 141.624 38.6675 136.824 30.7252 28.6166 133.703 25.4929 25.8359 

2 Bus 0.195 298.08 130.411 283.248 77.3351 273.648 61.4504 57.2331 267.406 50.9858 51.6718 

3 Bike 0.034 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.473 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.11 0.69 0.10 0.89 0.11 0.94 0.96 0.12 0.93 0.90 

Figure 11‐9 – TOPSIS results with SAW & AHP optimals for Occupancy‐based, per mode (volume x4) 
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TOPSIS 
90-57-25 
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a:

1 Car 0.297 154.761 66.3939 147.033 37.9387 142.026 28.9561 26.3781 138.764 21.0892 19.5231 

2 Bus 0.195 113.661 57.8553 108.169 43.1752 104.654 41.6663 42.4612 102.399 52.7291 64.8794 

3 Bike 0.034 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.473 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.12 0.68 0.10 0.88 0.11 0.93 0.94 0.12 0.91 0.85 

Figure 11‐10 – TOPSIS results with SAW & AHP optimals for Occupancy‐based, per direction (volume x4) 
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2 Bus 0.297 298.08 130.411 283.248 77.3351 273.648 61.4504 57.2331 267.406 50.9858 51.6718 

3 Bike 0.034 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.473 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.11 0.69 0.10 0.89 0.11 0.94 0.96 0.12 0.93 0.90 

Figure 11‐11 – TOPSIS results with SAW & AHP optimals for Priority‐based, per mode (volume x4) 
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1 Car 0.195 154.761 66.3939 147.033 37.9387 142.026 28.9561 26.3781 138.764 21.0892 19.5231 

2 Bus 0.297 113.661 57.8553 108.169 43.1752 104.654 41.6663 42.4612 102.399 52.7291 64.8794 

3 Bike 0.034 11.086 7.97658 12.3469 7.00866 13.6111 6.63231 6.25627 14.8776 5.65475 5.47129 

4 Ped 0.473 24.7245 23.4887 25.681 23.801 26.7171 24.4751 24.4191 27.8091 25.2513 26.2234 

Score 0.13 0.72 0.12 0.90 0.12 0.93 0.94 0.13 0.87 0.77 

Figure 11‐12 – TOPSIS results with SAW & AHP optimals for Priority‐based, per direction (volume x4) 
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